Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Stretchable self-tuning MRI receive coils based on liquid metal technology (LiquiTune).

Tytuł:
Stretchable self-tuning MRI receive coils based on liquid metal technology (LiquiTune).
Autorzy:
Motovilova E; Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA. .; Department of Radiology, Hospital for Special Surgery, New York, NY, 10021, USA. .
Tan ET; Department of Radiology, Hospital for Special Surgery, New York, NY, 10021, USA.
Taracila V; GE Healthcare, Aurora, OH, USA.
Vincent JM; GE Healthcare, Aurora, OH, USA.
Grafendorfer T; GE Healthcare, Aurora, OH, USA.
Shin J; Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA.
Potter HG; Department of Radiology, Hospital for Special Surgery, New York, NY, 10021, USA.
Robb FJL; GE Healthcare, Aurora, OH, USA.
Sneag DB; Department of Radiology, Hospital for Special Surgery, New York, NY, 10021, USA.
Winkler SA; Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA. .
Źródło:
Scientific reports [Sci Rep] 2021 Aug 10; Vol. 11 (1), pp. 16228. Date of Electronic Publication: 2021 Aug 10.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Phantoms, Imaging*
Signal-To-Noise Ratio*
Knee/*diagnostic imaging
Magnetic Resonance Imaging/*instrumentation
Magnetic Resonance Imaging/*methods
Humans
References:
IEEE Trans Biomed Eng. 2020 Aug;67(8):2187-2193. (PMID: 31794385)
IEEE Trans Med Imaging. 2010 Feb;29(2):482-7. (PMID: 20129848)
IEEE Trans Microw Theory Tech. 2019 May;67(5):1717-1726. (PMID: 31423023)
IEEE Trans Biomed Eng. 2019 Jun;66(6):1542-1548. (PMID: 30307855)
Magn Reson Med. 1999 Nov;42(5):952-62. (PMID: 10542355)
Nat Biomed Eng. 2018 Aug;2(8):570-577. (PMID: 30854251)
IEEE Trans Med Imaging. 2019 Jun;38(6):1420-1426. (PMID: 30582533)
Radiology. 2019 Apr;291(1):180-185. (PMID: 30806599)
Magn Reson Med. 2019 May;81(5):3406-3415. (PMID: 30575119)
Nat Commun. 2020 Nov 13;11(1):5793. (PMID: 33188186)
NMR Biomed. 2018 Aug;31(8):e3944. (PMID: 29928791)
Magn Reson Med. 2008 Mar;59(3):590-7. (PMID: 18219635)
Sensors (Basel). 2018 Dec 22;19(1):. (PMID: 30583533)
Magn Reson Med. 2002 Jun;47(6):1202-10. (PMID: 12111967)
Magn Reson Med. 2009 Feb;61(2):429-38. (PMID: 19161134)
Magn Reson Med. 1997 Oct;38(4):591-603. (PMID: 9324327)
Int J Environ Res Public Health. 2010 May;7(5):2337-61. (PMID: 20623028)
Vital Health Stat 3. 2016 Aug;(39):1-46. (PMID: 28437242)
J Magn Reson Imaging. 2008 Nov;28(5):1219-25. (PMID: 18972330)
Magn Reson Med. 2021 Apr;85(4):2327-2333. (PMID: 33058317)
Magn Reson Med. 2020 Mar;83(3):1135-1146. (PMID: 31483530)
Med Phys. 1985 Sep-Oct;12(5):604-7. (PMID: 4046995)
Nat Commun. 2016 Mar 10;7:10839. (PMID: 26961073)
Med Phys. 2014 Oct;41(10):102303. (PMID: 25281973)
Magn Reson Med. 1990 Nov;16(2):192-225. (PMID: 2266841)
J Magn Reson. 2018 Nov;296:47-59. (PMID: 30205313)
Magn Reson Med. 1986 Aug;3(4):604-18. (PMID: 3747821)
NMR Biomed. 2015 Apr;28(4):460-7. (PMID: 25740180)
Sci Rep. 2020 Jun 1;10(1):8844. (PMID: 32483259)
Adv Mater. 2017 Nov;29(44):. (PMID: 29027724)
PLoS One. 2018 Nov 1;13(11):e0206963. (PMID: 30383832)
AJNR Am J Neuroradiol. 1986 Mar-Apr;7(2):246-7. (PMID: 3082157)
Grant Information:
R00 EB024341 United States EB NIBIB NIH HHS; R01 EB031820 United States EB NIBIB NIH HHS
Entry Date(s):
Date Created: 20210811 Date Completed: 20211108 Latest Revision: 20230113
Update Code:
20240105
PubMed Central ID:
PMC8355233
DOI:
10.1038/s41598-021-95335-6
PMID:
34376703
Czasopismo naukowe
Magnetic resonance imaging systems rely on signal detection via radiofrequency coil arrays which, ideally, need to provide both bendability and form-fitting stretchability to conform to the imaging volume. However, most commercial coils are rigid and of fixed size with a substantial mean offset distance of the coil from the anatomy, which compromises the spatial resolution and diagnostic image quality as well as patient comfort. Here, we propose a soft and stretchable receive coil concept based on liquid metal and ultra-stretchable polymer that conforms closely to a desired anatomy. Moreover, its smart geometry provides a self-tuning mechanism to maintain a stable resonance frequency over a wide range of elongation levels. Theoretical analysis and numerical simulations were experimentally confirmed and demonstrated that the proposed coil withstood the unwanted frequency detuning typically observed with other stretchable coils (0.4% for the proposed coil as compared to 4% for a comparable control coil). Moreover, the signal-to-noise ratio of the proposed coil increased by more than 60% as compared to a typical, rigid, commercial coil.
(© 2021. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies