Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Empirical and Earth system model estimates of boreal nitrogen fixation often differ: A pathway toward reconciliation.

Tytuł:
Empirical and Earth system model estimates of boreal nitrogen fixation often differ: A pathway toward reconciliation.
Autorzy:
Hupperts SF; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
Gerber S; Soil and Water Sciences Department, University of Florida, Gainesville, FL, USA.
Nilsson MC; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
Gundale MJ; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
Źródło:
Global change biology [Glob Chang Biol] 2021 Nov; Vol. 27 (22), pp. 5711-5725. Date of Electronic Publication: 2021 Aug 21.
Typ publikacji:
Journal Article; Review
Język:
English
Imprint Name(s):
Publication: : Oxford : Blackwell Pub.
Original Publication: Oxford, UK : Blackwell Science, 1995-
MeSH Terms:
Bryophyta*
Nitrogen Fixation*
Earth, Planet ; Ecosystem ; Nitrogen
References:
Ackermann, K., Zackrisson, O., Rousk, J., Jones, D. L., & DeLuca, T. H. (2012). N2 fixation in feather mosses is a sensitive indicator of N deposition in boreal forests. Ecosystems, 15(6), 986-998. https://doi.org/10.1007/s10021-012-9562-y.
Barron, A. R., Wurzburger, N., Bellenger, J. P., Wright, S. J., Kraepiel, A. M. L., & Hedin, L. O. (2009). Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nature Geoscience, 2(1), 42-45. https://doi.org/10.1038/ngeo366.
Bay, G., Nahar, N., Oubre, M., Whitehouse, M. J., Wardle, D. A., Zackrisson, O., Nilsson, M., & Rasmussen, U. (2013). Boreal feather mosses secrete chemical signals to gain nitrogen. New Phytologist, 200, 54-60. https://doi.org/10.1111/nph.12403.
Cao, M., & Woodward, F. I. (1998). Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393, 249-252. https://doi.org/10.1038/246170a0.
Carrell, A. A., Kolton, M., Glass, J. B., Pelletier, D. A., Warren, M. J., Kostka, J. E., Iversen, C. M., Hanson, P. J., & Weston, D. J. (2019). Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Global Change Biology, 25(9), 2993-3004. https://doi.org/10.1111/gcb.14715.
Chapin, III F. S., Conway, A. J., Johnstone, J. F., Hollingsworth, T. N., & Hollingsworth, J. (2016). Absence of net long-term successional facilitation by alder in a boreal Alaska floodplain. Ecology, 97(11), 2986-2997. https://doi.org/10.1002/ecy.1529.
Cleveland, C. C., Townsend, A. R., Schimel, D. S., Fisher, H., Howarth, R. W., Hedin, L. O., Perakis, S. S., Latty, E. F., Von Fischer, J. C., Hlseroad, A., & Wasson, M. F. (1999). Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochemical Cycles, 13(2), 623-645. https://doi.org/10.1002/(ISSN)1944-9224.
Davies-Barnard, T., & Friedlingstein, P. (2020). The global distribution of biological nitrogen fixation in terrestrial natural ecosystems. Global Biogeochemical Cycles, 34(3), 1-17. https://doi.org/10.1029/2019gb006387.
Davies-Barnard, T., Meyerholt, J., Zaehle, S., Friedlingstein, P., Brovkin, V., Fan, Y., Fisher, R. A., Jones, C. D., Lee, H., Peano, D., Smith, B., Warlind, D., & Wiltshire, A. (2020). Nitrogen cycling in cmip6 land surface models: Progress and limitations. Biogeosciences Discussions, 17(20), 5129-5148. https://doi.org/10.5194/bg-17-5129-2020.
DeLuca, T. H., Zackrisson, O., Nilsson, M. C., & Sellstedt, A. (2002). Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature, 419(6910), 917-920. https://doi.org/10.1038/nature01051.
Dynarski, K. A., & Houlton, B. Z. (2018). Nutrient limitation of terrestrial free-living nitrogen fixation. New Phytologist, 217(3), 1050-1061. https://doi.org/10.1111/nph.14905.
Edwards, E. J., McCaffery, S., & Evans, J. R. (2006). Phosphorus availability and elevated CO2 affect biological nitrogen fixation and nutrient fluxes in a clover-dominated sward. New Phytologist, 169, 157-167. https://doi.org/10.1111/j.1469-8137.2005.01568.x.
Eisel, K. A., Schimel, D. S., Kapustka, L. A., & Parton, W. J. (1989). Effects of available P and N: P ratios on non-symbiotic dinitrogen fixation in tallgrass prairie soils. Oecologia, 79(4), 471-474. https://doi.org/10.1007/BF00378663.
Fay, P. (1992). Oxygen relations of nitrogen fixation in cyanobacteria. Microbiological Reviews, 56(2), 340-373. https://doi.org/10.1128/mmbr.56.2.340-373.1992.
Finzi, A. C., Austin, A. T., Cleland, E. E., Frey, S. D., Houlton, B. Z., & Wallenstein, M. D. (2011). Responses and feedbacks of coupled biogeochemical cycles to climate change: Examples from terrestrial ecosystems. Frontiers in Ecology and the Environment, 9(1), 61-67. https://doi.org/10.1890/100001.
Fisher, J. B., Sitch, S., Malhi, Y., Fisher, R. A., Huntingford, C., & Tan, S.-Y. (2010). Carbon cost of plant nitrogen acquisition: A mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixation. Global Biogeochemical Cycles, 24(1), n/a-n/a. https://doi.org/10.1029/2009gb003621.
Galloway, J. N., Schlesinger, W. H., Levy, H. II, Michaels, A., & Schnoor, J. L. (1995). Nitrogen fixation: Anthropogenic enhancement-environmental response. Global Biogeochemical Cycles, 9(2), 235-252. https://doi.org/10.1029/95GB00158.
Gerber, S., Hedin, L. O., Keel, S. G., Pacala, S. W., & Sheyliakova, E. (2013). Land use change and nitrogen feedbacks constrain the trajectory of the land carbon sink. Geophysical Research Letters, 40, 5128-5222. https://doi.org/10.1002/grl.50957.
Gerber, S., Hedin, L. O., Oppenheimer, M., Pacala, S. W., & Shevliakova, E. (2010). Nitrogen cycling and feedbacks in a global dynamic land model. Global Biogeochemical Cycles, 24(1), 1-15. https://doi.org/10.1029/2008GB003336.
Gillett, N. P., Weaver, A. J., Zwiers, F. W., & Flannigan, M. D. (2004). Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 31(18). https://doi.org/10.1029/2004GL020876.
Goll, D. S., Winkler, A. J., Raddatz, R., Dong, N., Prentice, I. C., Ciais, P., & Brovkin, V. (2017). Carbon-nitrogen interactions in idealized simulations with JSBACH (version 3.10). Geoscientific Model Development, 10(5), 2009-2030. https://doi.org/10.5194/gmd-10-2009-2017.
Graham, S. A., & Turkington, R. (2000). Population dynamics response of Lupinus arcticus to fertilization, clipping, and neighbour removal in the understory of the boreal forest. Canadian Journal of Botany, 78(6), 753-758. https://doi.org/10.1139/cjb-78-6-753.
Gundale, M. J., Bach, L. H., & Nordin, A. (2013). The impact of simulated chronic nitrogen deposition on the biomass and N2-Fixation activity of two boreal feather moss-Cyanobacteria associations. Biology Letters, 9(6). https://doi.org/10.1098/rsbl.2013.0797.
Gundale, M. J., DeLuca, T. H., & Nordin, A. (2011). Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Global Change Biology, 17(8), 2743-2753. https://doi.org/10.1111/j.1365-2486.2011.02407.x.
Gundale, M. J., Gustafsson, H., & Nilsson, M. C. (2009). The sensitivity of nitrogen fixation by a feathermoss-cyanobacteria association to litter and moisture variability in young and old boreal forests. Canadian Journal of Forest Research, 39(12), 2542-2549. https://doi.org/10.1139/X09-160.
Gundale, M. J., Nilsson, M., Bansal, S., & Jäderlund, A. (2012). The interactive effects of temperature and light on biological nitrogen fixation in boreal forests. New Phytologist, 194(2), 453-463. https://doi.org/10.1111/j.1469-8137.2012.04071.x.
Gundale, M. J., Wardle, D. A., & Nilsson, M. C. (2012). The effect of altered macroclimate on N-fixation by boreal feather mosses. Biology Letters, 8(5), 805-808. https://doi.org/10.1098/rsbl.2012.0429.
Gutschick, V. P. (1981). Evolved strategies in nitrogen acquisition by plants. The American Naturalist, 118(5), 607-637. https://doi.org/10.1086/283858.
Hedwall, P. O., Nordin, A., Strengbom, J., Brunet, J., & Olsson, B. (2013). Does background nitrogen deposition affect the response of boreal vegetation to fertilization? Oecologia, 173(2), 615-624. https://doi.org/10.1007/s00442-013-2638-3.
Hendrickson, O. Q., & Burgess, D. (1989). Nitrogen-fixing plants in a cut-over lodgepole pine stand of southern British Columbia. Canadian Journal of Forest Research, 19, 936-939. https://doi.org/10.1139/x89-143.
Hofmockel, K. S., & Schlesinger, W. H. (2007). Carbon dioxide effects on heterotrophic dinitrogen fixation in a temperate pine forest. Soil Society of America Journal, 71(1), 140-144. https://doi.org/10.2136/sssaj2006.110.
Högberg, P., Näsholm, T., Franklin, O., & Högberg, M. (2017). Tamm Review: On the nature of the nitrogen limitation to plant growht in Fennoscandian boreal forests. Forest Ecology and Management, 403, 161-185. https://doi.org/10.1016/j.foreco.2017.04.045.
Hopkins, F. M., Torn, M. S., & Trumbore, S. E. (2012). Warming accelerates decomposition of decades-old carbon in forest soils. Proceedings of the National Academy of Sciences of the United States of America, 109(26), E1753-E1761. https://doi.org/10.1073/pnas.1120603109.
Houlton, B. Z., Wang, Y. P., Vitousek, P. M., & Field, C. B. (2008). A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 454(7202), 327-330. https://doi.org/10.1038/nature07028.
Houseman, B., Ruess, R., Hollingsworth, T., & Verbyla, D. (2020). Can Siberian alder N-fixation offset N-loss after severe fire? Quantifying post-fire Siberian alder distribution, growth, and N-fixation in boreal Alaska. PLoS ONE, 15, 1-22. https://doi.org/10.1371/journal.pone.0238004.
Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y., & Field, C. B. (2003). Nitrogen and climate change. Science, 302(November), 1512-1513. https://doi.org/10.1016/j.buildenv.2005.09.015.
Hungate, B. A., Stiling, P. D., Dijkstra, P., Johnson, D. W., Ketterer, M. E., Hymus, G. J., Hinkle, C. R., & Drake, B. G. (2004). CO2 elicits long-term decline in nitrogen fixation. Science, 304(5675), 1291. https://doi.org/10.1126/science.1095549.
IPCC. (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Eds.)]. World Meteorological Organization Technical Document.
Jackson, B. G., Martin, P., Nilsson, M. C., & Wardle, D. A. (2011). Response of feather moss associated N2 fixation and litter decomposition to variations in simulated rainfall intensity and frequency. Oikos, 120(4), 570-581. https://doi.org/10.1111/j.1600-0706.2010.18641.x.
Jain, A., Yang, X., Kheshgi, H., McGuire, A. D., Post, W., & Kicklighter, D. (2009). Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors. Global Biogeochemical Cycles, 23, GB4028. https://doi.org/10.1029/2009GB003519.
Jean, M.-E., Cassar, N., Setzer, C., & Bellenger, J.-P. (2012). Short-term N2 fixation kinetics in a moss-associated cyanobacteria. Environmental Science & Technology, 46(16), 8667-8671. https://doi.org/10.1021/es3018539.
Jean, M., Mack, M. C., & Johnstone, J. F. (2018). Spatial and temporal variation in moss-associated dinitrogen fixation in coniferous- and deciduous-dominated Alaskan boreal forests. Plant Ecology, 219(7), 837-851. https://doi.org/10.1007/s11258-018-0838-y.
Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C., Barton, C. V. M., Boer, M. M., Carrillo, Y., Castañeda-Gómez, L., Collins, L., Crous, K. Y., De Kauwe, M. G., dos Santos, B. M., Emmerson, K. M., Facey, S. L., Gherlenda, A. N., Gimeno, T. E., Hasegawa, S., Johnson, S. N., … Ellsworth, D. S. (2020). The fate of carbon in a mature forest under carbon dioxide enrichment. Nature, 580(7802), 227-231. https://doi.org/10.1038/s41586-020-2128-9.
Kardol, P., Spitzer, C. M., Gundale, M. J., Nilsson, M.-C., & Wardle, D. (2016). Trophic cascades in the bryosphere: The impact of global change factors on top-down control of cyanobacterial N2-fixation. Ecology Letters, 19(8), 967-976. https://doi.org/10.1111/ele.12635.
Kasischke, E. S., & Turetsky, M. R. (2006). Recent changes in the fire regime across the North American boreal region-Spatial and temporal patterns of burning across Canada and Alaska. Geophysical Research Letters, 33(9), L09703. https://doi.org/10.1029/2006GL025677.
Kox, M. A. R., Aalto, S. L., Penttila, T., Ettwig, K. F., Jetten, M. S. M., & van Kessel, M. A. H. J. (2018). Microbial nitrogen fixation and methane oxidation are strongly enhanced by light in Sphagnum mosses. AMB Express, 8(76), https://doi.org/10.1186/s13568-018-0607-2.
Kukavskaya, E. A., Buryak, L. V., Shvetsov, E. G., Conard, S. G., & Kalenskaya, O. P. (2016). The impact of increasing fire frequency on forest transformations in southern Siberia. Forest Ecology and Management, 382, 225-235. https://doi.org/10.1016/j.foreco.2016.10.015.
Lagerström, A., Nilsson, M. C., Zackrisson, O., & Wardle, D. A. (2007). Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression. Functional Ecology, 21(6), 1027-1033. https://doi.org/10.1111/j.1365-2435.2007.01331.x.
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., … Zeng, X. (2019). The community land model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems, 11(12), 4245-4287. https://doi.org/10.1029/2018MS001583.
Lindo, Z., & Gonzalez, A. (2010). The bryosphere: An integral and influential component of the Earth’s biosphere. Ecosystems, 12(4), 612-627. https://doi.org/10.1007/s10021-010-9336-3.
Lindo, Z., & Griffith, D. A. (2017). Elevated atmospheric CO2 and warming stimulates growth and nitrogen fixation in a common forest floor cyanobacterium under axenic conditions. Forests, 8(3). https://doi.org/10.3390/f8030073.
Lindo, Z., Nilsson, M.-C., & Gundale, M. J. (2013). Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. Global Change Biology, 19, 2022-2035. https://doi.org/10.1111/gcb.12175.
Luo, Y., Su, B., Currie, W. S., Dukes, J. S., Finzi, A., Hartwig, U., Hungate, B., McMurtrie, R. E., Oren, R., Parton, W. J., Pataki, D. E., Shaw, M. R., Zak, D. R., & Field, C. B. (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, 54(8), 731.
Mack, M. C., Walker, X. J., Johnstone, J. F., Alexander, H. D., Melvin, A. M., Jean, M., & Miller, S. N. (2021). Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science, 283, 280-283. https://doi.org/10.1126/science.abf3903.
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S., Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., … Roeckner, E. (2019). Developments in the MPI-M earth system model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. Journal of Advances in Modeling Earth Systems, 11(4), 998-1038. https://doi.org/10.1029/2018MS001400.
Melillo, J. M., Butler, S., Johnson, J., Mohan, J., Steudler, P., Lux, H., Burrows, E., Bowles, F., Smith, R., Scott, L., Vario, C., Hill, T., Burton, A., Zhouj, Y. M., & Tang, J. (2011). Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences of the United States of America, 108(23), 9508-9512. https://doi.org/10.1073/pnas.1018189108.
Menge, D. N. L., Levin, S. A., & Hedin, L. O. (2008). Evolutionary tradeoffs can select against nitrogen fixation and thereby maintain nitrogen limitation. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 1573-1578. https://doi.org/10.1073/pnas.0711411105.
Meyerholt, J., Sickel, K., & Zaehle, S. (2020). Ensemble projections elucidate effects of uncertainty in terrestrial nitrogen limitation on future carbon uptake. Global Change Biology, 26(7), 3978-3996. https://doi.org/10.1111/gcb.15114.
Meyerholt, J., Zaehle, S., & Smith, M. J. (2016). Variability of projected terrestrial biosphere responses to elevated levels of atmospheric CO2 due to uncertainty in biological nitrogen fixation. Biogeosciences, 13(5), 1491-1518. https://doi.org/10.5194/bg-13-1491-2016.
Montgomery, R. A., Rice, K. E., Stefanski, A., Rich, R. L., & Reich, P. B. (2020). Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. Proceedings of the National Academy of Sciences of the United States of America, 117(19), 10397-10405. https://doi.org/10.1073/pnas.1917508117.
Moyes, A. B., Kueppers, L. M., Pett-Ridge, J., Carper, D. L., Vandehey, N., O’Neil, J., & Frank, A. C. (2016). Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytologist, 210, 657-668. https://doi.org/10.1111/nph.13850.
Natali, S. M., Schuur, E. A. G., & Rubin, R. L. (2012). Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. Journal of Ecology, 100(2), 488-498. https://doi.org/10.1111/j.1365-2745.2011.01925.x.
Niklaus, P. A., Leadley, P. W., Stöcklin, J., & Körner, C. (1998). Nutrient relations in calcareous grassland under elevated CO2. Oecologia, 116(1), 67-75. https://doi.org/10.1007/s004420050564.
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P. J., Levis, S., Swenson, S. C., Thornton, P. E., Dai, A., Decker, M., Dickinson, R., Feddema, J., Heald, C. L., Hoffman, F., Lamarque, J.-F., Mahowald, N., Niu, G.-Y., Qian, T., … Zeng, X. (2010). Technical description of version 4.0 of the community land model (CLM) (No. NCAR/TN-478+STR). University Corporation for Atmospheric Research. https://doi.org/10.5065/D6FB50WZ.
Padda, K. P., Puri, A., & Chanway, C. (2019). Endophytic nitrogen fixation-A possible ‘hidden’ source of nitrogen for lodgepole pine trees growing at unreclaimed gravel mining sites. FEMS Microbiology Ecology, 95, fiz172. https://doi.org/10.1093/femsec/fiz172.
Peng, J., Wang, Y.-P., Houlton, B. Z., Dan, L., Pak, B., & Tang, X. (2020). Global carbon sequestration is highly sensitive to model-based formulations of nitrogen fixation. Global Biogeochemical Cycles, 34, e2019GB006296. https://doi.org/10.1029/2019GB006296.
Rajeev, L., Da Rocha, U. N., Klitgord, N., Luning, E. G., Fortney, J., Axen, S. D., Shih, P. M., Bouskill, N. J., Bowen, B. P., Kerfeld, C. A., Garcia-Pichel, F., Brodie, E. L., Northen, T. R., & Mukhopadhyay, A. (2013). Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. The ISME Journal, 7(11), 2178-2191. https://doi.org/10.1038/ismej.2013.83.
Rastetter, E. B., Vitousek, P. M., Field, C., Shaver, G. R., Herbert, D., & Gren, G. I. (2001). Resource optimization and symbiotic nitrogen fixation. Ecosystems, 4(4), 369-388. https://doi.org/10.1007/s10021-001-0018-z.
Reed, S. C., Cleveland, C. C., & Townsend, A. R. (2011). Functional ecology of free-living nitrogen fixation: A contemporary perspective. Annual Review of Ecology, Evolution, and Systematics, 42(1), 489-512. https://doi.org/10.1146/annurev-ecolsys-102710-145034.
Reich, P. B., Hungate, B. A., & Luo, Y. (2006). Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology, Evolution, and Systematics, 37(1), 611-636. https://doi.org/10.1146/annurev.ecolsys.37.091305.110039.
Reich, P. B., Sendall, K. M., Rice, K., Rich, R. L., Stefanski, A., Hobbie, S. E., & Montgomery, R. A. (2015). Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nature Climate Change, 5(February). https://doi.org/10.1038/NCLIMATE2497.
Rice, K. E., Montgomery, R. A., Stefanski, A., Rich, R. L., & Reich, P. B. (2018). Experimental warming advances phenology of groundlayer plants at the boreal-temperate forest ecotone. American Journal of Botany, 105(5), 851-861. https://doi.org/10.1002/ajb2.1091.
Rousk, K., Jones, D. L., & DeLuca, T. H. (2013). Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems. Frontiers in Microbiology, 4(JUN), 1-10. https://doi.org/10.3389/fmicb.2013.00150.
Rousk, K., Jones, D. L., & DeLuca, T. H. (2014a). Moss-nitrogen input to boreal forest soils: Tracking 15N in a field experiment. Soil Biology & Biochemistry, 72, 100-104. https://doi.org/10.1016/j.soilbio.2014.01.031.
Rousk, K., Jones, D. L., & DeLuca, T. H. (2014b). The resilience of nitrogen fixation in feather moss (Pleurozium schreberi)-cyanobacteria associations after a drying and rewetting cycle. Plant and Soil, 377, 159-167. https://doi.org/10.1007/s11104-013-1984-6.
Salazar, A., Rousk, K., Jónsdóttir, I. S., Bellenger, J.-P., & Andrésson, Ó. S. (2020). Faster nitrogen cycling and more fungal and root biomass in cold ecosystems under experimental warming: A meta-analysis. Ecology, 101(2). https://doi.org/10.1002/ecy.2938.
Salemaa, J., Lindroos, A.-J., Merilä, P., Mäkipää, R., & Smolander, A. (2019). N2 fixation associated with the bryophyte layer is suppressed by low levels of nitrogen deposition in boreal forests. Science of the Total Environment, 633, 995-1004. https://doi.org/10.1016/j.scitotenv.2018.10.364.
Slate, M. L., Sullivan, B. W., & Callaway, R. M. (2019). Desiccation and rehydration of mosses greatly increases resource fluxes that alter soil carbon and nitrogen cycling. Journal of Ecology, 107(4), 1767-1778. https://doi.org/10.1111/1365-2745.13162.
Smith, B., Wärlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., & Zaehle, S. (2014). Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences, 11(7), 2027-2054. https://doi.org/10.5194/bg-11-2027-2014.
Sorensen, P. L., Lett, S., & Michelsen, A. (2012). Moss-specific changes in nitrogen fixation following two decades of warming, shading, and fertilizer addition. Plant Ecology, 213(4), 695-706. https://doi.org/10.1007/s11258-012-0034-4.
Stuart, R. K., Pederson, E. R. A., Weyman, P. D., Weber, P. K., Rassmussen, U., & Dupont, C. L. (2020). Bidirectional C and N transfer and a potential role for sulfur in an epiphytic diazotrophic mutualism. The ISME Journal, 14(12), 3068-3078. https://doi.org/10.1038/s41396-020-00738-4.
Thornton, P. E., Lamarque, J. F., Rosenbloom, N. A., & Mahowald, N. M. (2007). Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochemical Cycles, 21(4), 1-15. https://doi.org/10.1029/2006GB002868.
Tobita, H., Yazaki, K., Harayama, H., & Kitao, M. (2016). Responses of symbiotic N2 fixation in Alnus species to the projected elevated CO2 environment. Trees, 30, 523-537. https://doi.org/10.1007/s00468-015-1297-x.
Tracy, C. R., Streten-Joyce, C., Dalton, R., Nussear, K. E., Gibb, K. S., & Christian, K. A. (2010). Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environmental Microbiology, 12(3), 592-607. https://doi.org/10.1111/j.1462-2920.2009.02098.x.
Turetsky, M. R. (2003). The role of bryophytes in carbon and nitrogen cycling. The Bryologist, 106(3), 395-409. https://doi.org/10.1639/05.
van Groenigen, K.-J., Six, J., Hungate, B. A., de Graaff, M.-A., van Breemen, N., & van Kessel, C. (2006). Element interactions limit soil carbon storage. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6571-6574. https://doi.org/10.1073/pnas.0509038103.
Vetter, V. M. S., Tjaden, N. B., Jaeschke, A., Buhk, C., Wahl, V., Wasowicz, P., & Jentsch, A. (2018). Invasion of a legume ecosystem engineer in a cold biome alters plant biodiversity. Frontiers in Plant Science, 9, 715. https://doi.org/10.3389/fpls.2018.00715.
Vitousek, P. M., Cassman, K., Cleveland, C., Crews, T., Field, C. B., Grimm, N. B., Howarth, R. W., Marino, R., Martinelli, L., Rastetter, E. B., & Sprent, J. I. (2002). Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry, 57-58, 1-45. https://doi.org/10.1023/A:1015798428743.
Vitousek, P. M., & Field, C. B. (1999). Ecosystem constraints to symbiotic nitrogen fixers: A simple model and its implications. Biogeochemistry, 46, 179-202. https://doi.org/10.1007/978-94-011-4645-6_9.
Walker, X. J., Baltzer, J. L., Cumming, S. G., Day, N. J., Ebert, C., Goetz, S., Johnstone, J. F., Potter, S., Rogers, B. M., Schuur, E. A. G., Turetsky, M. R., & Mack, M. C. (2019). Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature, 572, 520-523. https://doi.org/10.1038/s41586-019-1474-y.
Wang, Y. P., & Houlton, B. Z. (2009). Nitrogen constraints on terrestrial carbon uptake: Implications for the global carbon-climate feedback. Geophysical Research Letters, 36(24). https://doi.org/10.1029/2009GL041009.
Wang, Y. P., Houlton, B. Z., & Field, C. B. (2007). A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production. Global Biogeochemical Cycles, 21(1), 1-15. https://doi.org/10.1029/2006GB002797.
Wang, Y. P., Law, R. M., & Pak, B. (2010). A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences, 7(7), 2261-2282. https://doi.org/10.5194/bg-7-2261-2010.
Warshan, D., Bay, G., Nahar, N., Wardle, D. A., Nilsson, M.-C., & Rasmussen, U. (2016). Seasonal variation in nifH abundance and expression of cyanobacterial communities associated with boreal feather mosses. The ISME Journal, 10, 2198-2208. https://doi.org/10.1038/ismej.2016.17.
Weston, D. J., Turetsky, M. R., Johnson, M. G., Granath, G., Lindo, Z., Belyea, L. R., Rice, S. K., Hanon, D. T., Engelhardt, K. A. M., Schmutz, J., Dorrepaal, E., Euskirchen, E. S., Stenøien, H. K., Szövényi, P., Jackson, M., Piatkowski, B. T., Muchero, W., Norby, R. J., Kostka, J. E., … Shaw, A. J. (2018). The Sphagnome Project: Enabling ecological and evolutionary insights through a genus-level sequencing project. New Phytologist, 217, 16-25. https://doi.org/10.1111/nph.14860.
Wieder, R. K., Vitt, D. H., Vile, M. A., Graham, J. A., Hartsock, J. A., Fillingim, H., House, M., Quinn, J. C., Scott, K. D., Petix, M., & McMillen, K. J. (2019). Experimental nitrogen addition alters structure and function of a boreal bog: Critical load and thresholds revealed. Ecological Monographs, 89(3), e01371. https://doi.org/10.1002/ecm.1371.
Wieder, R. K., Vitt, D. H., Vile, M. A., Graham, J. A., Hartsock, J. A., Popma, J. M. A., Fillingim, H., House, M., Quinn, J. C., Scott, K. D., Petix, M., & McMillen, K. J. (2020). Experimental nitrogen addition alters structure and function of a boreal poor fen: Implications for critical loads. Science of the Total Environment, 733, 138619. https://doi.org/10.1016/j.scitotenv.2020.138619.
Wieder, W. R., Cleveland, C. C., Lawrence, D. M., & Bonan, G. B. (2015). Effects of model structural uncertainty on carbon cycle projections: Biological nitrogen fixation as a case study. Environmental Research Letters, 10(4). https://doi.org/10.1088/1748-9326/10/4/044016.
Wieder, W. R., Cleveland, C. C., Smith, W. K., & Todd-brown, K. (2015). Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience, 8(April), 441-444. https://doi.org/10.1038/NGEO2413.
Wiltshire, A. J., Burke, E. J., Chadburn, S. E., Jones, C. D., Cox, P. M., Davies-Barnard, T., Friedlingstein, P., Harper, A. B., Liddicoat, S., Sitch, S. A., & Zaehle, S. (2020). JULES-CN: A coupled terrestrial Carbon-Nitrogen Scheme (JULES vn5.1). Geoscientific Model Development Discussions, 2020(July), 1-40. https://doi.org/10.5194/gmd-2020-205.
Wurtz, T. (1995). Understory alder in three boreal forests of Alaska: Local distribution and effects on soil fertility. Canadian Journal of Forest Research, 25, 987-996. https://doi.org/10.1139/x95-107.
Xue, K., Yuan, M. M., Shi, Z. J., Qin, Y., Deng, Y., Cheng, L., Wu, L., He, Z., Van Nostrand, J. D., Bracho, R., Natali, S., Schuur, E. A. G., Luo, C., Konstantinidis, K. T., Wang, Q., Cole, J. R., Tiedje, J. M., Luo, Y., & Zhou, J. (2016). Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nature Climate Change, 6(6), 595-600. https://doi.org/10.1038/nclimate2940.
Zackrisson, O., DeLuca, T. H., Gentili, F., Sellstedt, A., & Jäderlund, A. (2009). Nitrogen fixation in mixed Hylocomium splendens moss communities. Oecologia, 160(2), 309-319. https://doi.org/10.1007/s00442-009-1299-8.
Zackrisson, O., DeLuca, T. H., Nilsson, M.-C., Sellstedt, A., & Berglund, L. M. (2004). Nitrogen fixation increases with successional age in boreal forests. Ecology, 85(12), 3327-3334. https://doi.org/10.1890/04-0461.
Zaehle, S., & Dalmonech, D. (2011). Carbon-nitrogen interactions on land at global scales: Current understanding in modelling climate biosphere feedbacks. Current Opinion in Environmental Sustainability, 3(5), 311-320. https://doi.org/10.1016/j.cosust.2011.08.008.
Zaehle, S., & Friend, D. (2010). Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Global Biogeochemical Cycles, 24, GB1005. https://doi.org/10.1029/2009GB003521.
Contributed Indexing:
Keywords: Earth system model; boreal; bryophyte; diazotroph; elevated CO2; nitrogen deposition; nitrogen fixation; nonvascular
Substance Nomenclature:
N762921K75 (Nitrogen)
Entry Date(s):
Date Created: 20210812 Date Completed: 20211101 Latest Revision: 20211101
Update Code:
20240105
DOI:
10.1111/gcb.15836
PMID:
34382301
Czasopismo naukowe
The impacts of global environmental change on productivity in northern latitudes will be contingent on nitrogen (N) availability. In circumpolar boreal ecosystems, nonvascular plants (i.e., bryophytes) and associated N 2 -fixing diazotrophs provide one of the largest known N inputs but are rarely accounted for in Earth system models. Instead, most models link N 2 -fixation with the functioning of vascular plants. Neglecting nonvascular N 2 -fixation may be contributing toward high uncertainty that currently hinders model predictions in northern latitudes, where nonvascular N 2 -fixing plants are more common. Adequately accounting for nonvascular N 2 -fixation and its drivers could subsequently improve predictions of future N availability and ultimately, productivity, in northern latitudes. Here, we review empirical evidence of boreal nonvascular N 2 -fixation responses to global change factors (elevated CO 2 , N deposition, warming, precipitation, and shading by vascular plants), and compare empirical findings with model predictions of N 2 -fixation using nine Earth system models. The majority of empirical studies found positive effects of CO 2 , warming, precipitation, or light on nonvascular N 2 -fixation, but N deposition strongly downregulated N 2 -fixation in most empirical studies. Furthermore, we found that the responses of N 2 -fixation to elevated CO 2 were generally consistent between models and very limited empirical data. In contrast, empirical-model comparisons suggest that all models we assessed, and particularly those that scale N 2 -fixation with net primary productivity or evapotranspiration, may be overestimating N 2 -fixation under increasing N deposition. Overestimations could generate erroneous predictions of future N stocks in boreal ecosystems unless models adequately account for the drivers of nonvascular N 2 -fixation. Based on our comparisons, we recommend that models explicitly treat nonvascular N 2 -fixation and that field studies include more targeted measurements to improve model structures and parameterization.
(© 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies