Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Structural basis for target site selection in RNA-guided DNA transposition systems.

Tytuł:
Structural basis for target site selection in RNA-guided DNA transposition systems.
Autorzy:
Park JU; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
Tsai AW; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
Mehrotra E; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
Petassi MT; Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.
Hsieh SC; Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.
Ke A; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
Peters JE; Department of Microbiology, Cornell University, Ithaca, NY 14853, USA. .
Kellogg EH; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA. .
Źródło:
Science (New York, N.Y.) [Science] 2021 Aug 13; Vol. 373 (6556), pp. 768-774. Date of Electronic Publication: 2021 Jul 15.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural
Język:
English
Imprint Name(s):
Publication: : Washington, DC : American Association for the Advancement of Science
Original Publication: New York, N.Y. : [s.n.] 1880-
MeSH Terms:
DNA Transposable Elements*
Bacterial Proteins/*chemistry
CRISPR-Associated Proteins/*chemistry
Cyanobacteria/*chemistry
Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/metabolism ; Bacterial Proteins/metabolism ; CRISPR-Associated Proteins/metabolism ; Cryoelectron Microscopy ; Cyanobacteria/genetics ; Cyanobacteria/metabolism ; DNA, Bacterial/metabolism ; Models, Molecular ; Protein Conformation ; Protein Folding ; RNA, Bacterial/metabolism ; Transposases/chemistry ; Transposases/metabolism
References:
Nat Methods. 2017 Aug;14(8):793-796. (PMID: 28671674)
Cell. 2015 Aug 13;162(4):860-71. (PMID: 26276634)
Nat Biotechnol. 2021 Apr;39(4):480-489. (PMID: 33230293)
Nat Methods. 2017 Mar;14(3):290-296. (PMID: 28165473)
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):E7358-E7366. (PMID: 28811374)
Nucleic Acids Res. 1992 May 25;20(10):2525-32. (PMID: 1317955)
J Struct Biol. 2005 Oct;152(1):36-51. (PMID: 16182563)
BMC Bioinformatics. 2004 Aug 19;5:113. (PMID: 15318951)
Plasmid. 2006 Mar;55(2):152-7. (PMID: 16139359)
Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):3936-41. (PMID: 10737770)
J Appl Crystallogr. 2012 Jun 1;45(Pt 3):581-586. (PMID: 22675231)
Protein Sci. 2020 Jan;29(1):128-140. (PMID: 31606894)
Protein Sci. 2018 Jan;27(1):293-315. (PMID: 29067766)
Methods Mol Biol. 2018;1764:475-489. (PMID: 29605934)
Cell. 1991 Jun 14;65(6):1003-13. (PMID: 1646076)
Nat Protoc. 2015 Jun;10(6):845-58. (PMID: 25950237)
J Comput Chem. 2004 Oct;25(13):1605-12. (PMID: 15264254)
Microbiol Spectr. 2014 Oct;2(5):. (PMID: 26104363)
Methods Mol Biol. 2021;2215:125-144. (PMID: 33368002)
EMBO J. 1998 Sep 15;17(18):5509-18. (PMID: 9736628)
Cell. 2020 Dec 23;183(7):1757-1771.e18. (PMID: 33271061)
Science. 2018 Aug 31;361(6405):866-869. (PMID: 30166482)
Mob DNA. 2010 Jul 23;1(1):18. (PMID: 20653944)
Science. 2020 Jun 5;368(6495):. (PMID: 32499410)
Cell. 1991 May 31;65(5):805-16. (PMID: 1645619)
Nat Struct Mol Biol. 2022 Feb;29(2):143-151. (PMID: 35173349)
Cell. 2021 Apr 29;184(9):2441-2453.e18. (PMID: 33770501)
Nature. 2020 Jan;577(7789):271-274. (PMID: 31853065)
Science. 2019 Jul 5;365(6448):48-53. (PMID: 31171706)
J Struct Biol. 2017 Jun;198(3):163-176. (PMID: 28193500)
Mol Cell. 2002 May;9(5):1079-89. (PMID: 12049743)
Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):531-544. (PMID: 29872004)
Mob DNA. 2021 Jun 8;12(1):13. (PMID: 34103093)
EMBO J. 2003 Nov 3;22(21):5904-17. (PMID: 14592987)
Mol Cell. 2000 Sep;6(3):637-48. (PMID: 11030343)
Microbiology (Reading). 2001 Dec;147(Pt 12):3241-7. (PMID: 11739756)
Protein Sci. 2021 Jan;30(1):70-82. (PMID: 32881101)
Mol Cell. 2002 Dec;10(6):1367-78. (PMID: 12504012)
J Struct Biol. 2021 Jun;213(2):107702. (PMID: 33582281)
Annu Rev Biochem. 1992;61:1011-51. (PMID: 1323232)
Cell. 1993 Mar 26;72(6):931-43. (PMID: 8384534)
Cell Res. 2020 Feb;30(2):182-184. (PMID: 31925391)
Elife. 2018 Jun 01;7:. (PMID: 29856314)
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. (PMID: 20383002)
Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10037-41. (PMID: 11517324)
Mol Microbiol. 2019 Dec;112(6):1635-1644. (PMID: 31502713)
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W294-7. (PMID: 22649060)
EMBO J. 2002 Jul 1;21(13):3494-504. (PMID: 12093750)
J Biol Chem. 1994 Nov 18;269(46):28829-33. (PMID: 7961840)
EMBO J. 2013 May 2;32(9):1238-49. (PMID: 23443047)
Elife. 2018 Nov 09;7:. (PMID: 30412051)
Curr Opin Struct Biol. 2019 Dec;59:168-177. (PMID: 31590109)
EMBO J. 2001 Feb 15;20(4):924-32. (PMID: 11179236)
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):E2858-65. (PMID: 24982178)
Nat Methods. 2017 Aug;14(8):797-800. (PMID: 28628127)
Science. 2017 Nov 3;358(6363):. (PMID: 29097521)
Gene. 1995 Dec 1;166(1):175-6. (PMID: 8529885)
Nature. 2019 Jul;571(7764):219-225. (PMID: 31189177)
Nat Methods. 2019 Nov;16(11):1146-1152. (PMID: 31591575)
Mol Cell. 2000 Sep;6(3):573-82. (PMID: 11030337)
Genes Dev. 1988 Feb;2(2):137-49. (PMID: 2834269)
Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):E2441-50. (PMID: 23776210)
Nat Rev Microbiol. 2019 Aug;17(8):513-525. (PMID: 31165781)
Grant Information:
R01 GM144566 United States GM NIGMS NIH HHS; R01 GM129118 United States GM NIGMS NIH HHS; R00 GM124463 United States GM NIGMS NIH HHS; R21 AI148941 United States AI NIAID NIH HHS; R35 GM118174 United States GM NIGMS NIH HHS
Substance Nomenclature:
0 (Bacterial Proteins)
0 (CRISPR-Associated Proteins)
0 (DNA Transposable Elements)
0 (DNA, Bacterial)
0 (RNA, Bacterial)
61D2G4IYVH (Adenosine Diphosphate)
8L70Q75FXE (Adenosine Triphosphate)
EC 2.7.7.- (Transposases)
SCR Organism:
Scytonema hofmannii
Entry Date(s):
Date Created: 20210813 Date Completed: 20210820 Latest Revision: 20220716
Update Code:
20240105
PubMed Central ID:
PMC9080059
DOI:
10.1126/science.abi8976
PMID:
34385391
Czasopismo naukowe
CRISPR-associated transposition systems allow guide RNA-directed integration of a single DNA cargo in one orientation at a fixed distance from a programmable target sequence. We used cryo-electron microscopy (cryo-EM) to define the mechanism that underlies this process by characterizing the transposition regulator, TnsC, from a type V-K CRISPR-transposase system. In this scenario, polymerization of adenosine triphosphate-bound TnsC helical filaments could explain how polarity information is passed to the transposase. TniQ caps the TnsC filament, representing a universal mechanism for target information transfer in Tn7/Tn7-like elements. Transposase-driven disassembly establishes delivery of the element only to unused protospacers. Finally, TnsC transitions to define the fixed point of insertion, as revealed by structures with the transition state mimic ADP•AlF 3 These mechanistic findings provide the underpinnings for engineering CRISPR-associated transposition systems for research and therapeutic applications.
(Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies