Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Impact of cisplatin administration on cerebellar cortical structure and locomotor activity of infantile and juvenile albino rats: the role of oxidative stress.

Tytuł:
Impact of cisplatin administration on cerebellar cortical structure and locomotor activity of infantile and juvenile albino rats: the role of oxidative stress.
Autorzy:
Mokhtar HEL; Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
Hulail MAE; Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
Mahmoud SM; Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt. .
Yousef DM; Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
Źródło:
Anatomical science international [Anat Sci Int] 2022 Jan; Vol. 97 (1), pp. 30-47. Date of Electronic Publication: 2021 Aug 13.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2009- : Tokyo : Springer Japan
Original Publication: Carlton, Vic., Australia : Blackwell Pub., c2002-
MeSH Terms:
Cisplatin*/toxicity
Oxidative Stress*
Animals ; Cerebellar Cortex ; Locomotion ; Rats ; Rats, Wistar
References:
Abou-Elghait A, El-Gamal DA, Abdel-Sameea AR, Mohamed AA (2010) Effect of cisplatin on the cerebellar cortex and spinal cord of adult male albino rat and the possible role of vitamin E: light and electron microscopic study. Egypt J Histol 33:202–212. .
Aboulhoda BE, Hassan SS (2018) Effect of prenatal tramadol on postnatal cerebellar development: Role of oxidative stress. J Chem Neuroanat 94:102–118. (PMID: 30342117)
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. (PMID: 6727660)
Ahmad S (2010) Platinum–DNA interactions and subsequent cellular processes controlling sensitivity to anticancer platinum complexes. Chem Biodivers 7:543–566. (PMID: 20232326)
Ahmed O, Ahmed R, El-Gareib A, El-Bakry A, Abd El-Tawab S (2012) Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: II—The developmental pattern of neurons in relation to oxidative stress and antioxidant defense system. Int J Dev Neurosci 30:517–537. (PMID: 22664656)
Ahmed RG (2005) Is there a balance between oxidative stress and antioxidant defense system during development? Med J Islamic World Acad Sci 15:55–63. .
Almutairi MM, Alanazi WA, Alshammari MA et al (2017) Neuro-protective effect of rutin against Cisplatin-induced neurotoxic rat model. BMC Complement Altern Med 17:472. (PMID: 289625595622464)
Arafa MH, Atteia HH (2020) Protective role of epigallocatechin gallate in a rat model of cisplatin-induced cerebral inflammation and oxidative damage: impact of modulating NF-κB and Nrf2. Neurotox Res 37:380–396. (PMID: 31410684)
Argyriou AA, Polychronopoulos P, Koutras A et al (2007) Clinical and electrophysiological features of peripheral neuropathy induced by administration of cisplatin plus paclitaxel-based chemotherapy. Eur J Cancer Care 16:231–237.
Avery SV (2011) Molecular targets of oxidative stress. Biochem J 434:201–210. (PMID: 21309749)
Aydin B, Unsal M, Sekeroglu ZA, Gülbahar Y (2011) The antioxidant and antigenotoxic effects of Pycnogenol ed.: Elsevier Health Sciences, ch:1, pp. 2–44.
Moore DL, Jessberger S (2013) All astrocytes are not created equal—the role of astroglia in brain injury. EMBO Rep 14:487–488. (PMID: 236190943674442)
Moser VC (2011) Functional assays for neurotoxicity testing. Toxicol Pathol 39:36–45. (PMID: 21075917)
Muñoz-Castañeda R, Díaz D, Peris L et al (2018) Cytoskeleton stability is essential for the integrity of the cerebellum and its motor-and affective-related behaviors. Sci Rep 8:1–14.
Myers JS, Pierce J, Pazdernik T (2008) Neurotoxicology of chemotherapy in relation to cytokine release, the blood-brain barrier, and cognitive impairment. Oncol Nurs Forum 35:916–920. (PMID: 18980922)
Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang K-C, Wegiel J (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 25:663–674. (PMID: 15172746)
Niki E, Yoshida Y, Saito Y, Noguchi N (2005) Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun 338:668–676. (PMID: 16126168)
Nishikimi M, Rao NA, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854. (PMID: 4400444)
Nkomozepi P, Mazengenya P, Ihunwo AO (2019) Age-related changes in Ki-67 and DCX expression in the BALB/c mouse (Mus Musculus) brain. Int J Dev Neurosci 72:36–47. (PMID: 30472241)
O’Rourke B, Cortassa S, Aon MA (2005) Mitochondrial ion channels: gatekeepers of life and death. Physiology 20:303–315. (PMID: 16174870)
Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. (PMID: 36810)
Owoeye O, Adedara IA, Farombi EO (2018) Pretreatment with taurine prevented brain injury and exploratory behaviour associated with administration of anticancer drug cisplatin in rats. Biomed Pharmacother 102:375–384. (PMID: 29571023)
Oz M, Atalik KEN, Yerlikaya FH, Demir EA (2015) Curcumin alleviates cisplatin-induced learning and memory impairments. Neurobiol Learn Mem 123:43–49. (PMID: 25982942)
Park SB, Goldstein D, Krishnan AV, et al (2013) Chemotherapy‐induced peripheral neurotoxicity: a critical analysis. CA: a cancer J clin 63(6):419–437.
Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30:11–26. (PMID: 25646037)
Picut CA, Parker GA (2017) Postnatal organ development as a complicating factor in juvenile toxicity studies in rats. Toxicol Pathol 45:248–252. (PMID: 2775363527753635)
Pisu M, Roda E, Avella D, Bernocchi G (2004) Developmental plasticity of rat cerebellar cortex after cisplatin injury: inhibitory synapses and differentiating Purkinje neurons. Neuroscience 129:655–664. (PMID: 15541887)
Pisu M, Roda E, Guioli S, Avella D, Bottone M, Bernocchi G (2005) Proliferation and migration of granule cells in the developing rat cerebellum: Cisplatin effects. Anat Record-Part Discov Mol Cell Evolut Biol 287:1226–1235.
Poljsak B, Šuput D, Milisav I (2013) Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev 2013:956792–956792. (PMID: 237380473657405)
Pujadas L, Gruart A, Bosch C et al (2010) Reelin regulates postnatal neurogenesis and enhances spine hypertrophy and long-term potentiation. J Neurosci 30:4636–4649. (PMID: 203571146632327)
Rahmanzadeh R, Hüttmann G, Gerdes J, Scholzen T (2007) Chromophore-assisted light inactivation of pKi-67 leads to inhibition of ribosomal RNA synthesis. Cell Proliferation 40:422–430. (PMID: 175310856496591)
Rao AR, Quach H, Smith E, Vatassery GT, Rao R (2014) Changes in ascorbate, glutathione and α-tocopherol concentrations in the brain regions during normal development and moderate hypoglycemia in rats. Neurosci Lett 568:67–71. (PMID: 246861864021725)
Rizor A, Pajarillo E, Johnson J, Aschner M, Lee E (2019) Astrocytic oxidative/nitrosative stress contributes to Parkinson’s disease pathogenesis: the dual role of reactive astrocytes. Antioxidants 8:265. (PMID: 6719180)
Salih N, Al-Baggou B (2019) Effect of memantine hydrochloride on cisplatin-induced neurobehavioral toxicity in mice. Acta Neurol Belg 120:71–82. (PMID: 31190140)
Santos NAGd, Ferreira RS, Santos ACd (2020) Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents. Food Chem Toxicol 136:111079. (PMID: 3189175431891754)
Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J cell physiol 182:311–322. (PMID: 10653597)
Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911. (PMID: 10931172)
Sen S, De B, Devanna N, Chakraborty R (2013) Cisplatin-induced nephrotoxicity in mice: protective role of Leea asiatica leaves. Ren Fail 35:1412–1417. (PMID: 24001301)
Shabani M, Hosseinmardi N, Haghani M, Shaibani V, Janahmadi M (2011) Maternal exposure to the CB1 cannabinoid agonist WIN 55212–2 produces robust changes in motor function and intrinsic electrophysiological properties of cerebellar Purkinje neurons in rat offspring. Neuroscience 172:139–152. (PMID: 20969930)
Shabani M, Larizadeh MH, Parsania S, Hajali V, Shojaei A (2012) Evaluation of destructive effects of exposure to cisplatin during developmental stage: no profound evidence for sex differences in impaired motor and memory performance. Int J Neurosci 122:439–448. (PMID: 22416800)
Shiraishi RD, Miyashita S, Yamashita M et al (2019) Expression of transcription factors and signaling molecules in the cerebellar granule cell development. Gene Expr Patterns 34:119068. (PMID: 31437514)
Shivakumar BR, Anandatheerthavarada HK, Ravindranath V (1991) Free radical scavenging systems in developing rat brain. Int J Dev Neurosci 9:181–185. (PMID: 2058419)
Smith AM, Zeve DR, Grisel JJ, Chen W-JA (2005) Neonatal alcohol exposure increases malondialdehyde (MDA) and glutathione (GSH) levels in the developing cerebellum. Dev Brain Res 160:231–238.
Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647. (PMID: 197824112787735)
Song TY, Chen CL, Liao JW, Ou HC, Tsai MS (2010) Ergothioneine protects against neuronal injury induced by cisplatin both in vitro and in vivo. Food Chem Toxicol 48:3492–3499. (PMID: 20932872)
Stehlik-Barry K, Babinec AJ 2017. Comparing Means and ANOVA. In: Data Analysis with IBM SPSS Statistics, Packt Publishing Ltd., Ch:11, pp 229–265.
Subramanian MV, James T (2010) Age-related protective effect of deprenyl on changes in the levels of diagnostic marker enzymes and antioxidant defense enzymes activities in cerebellar tissue in Wistar rats. Cell Stress Chaperones 15:743–751. (PMID: 202249153006612)
Sugiyama A, Sun J, Ueda K, Furukawa S, Takeuchi T (2015) Effect of methotrexate on cerebellar development in infant rats. J Vet Med Sci 14:0475. (PMID: 10.1292/jvms.14-0475257546514527500)
Tredici G, Tredici S, Fabbrica D, Minoia C, Cavaletti G (1998) Experimental cisplatin neuronopathy in rats and the effect of retinoic acid administration. J Neurooncol 36:31–40. (PMID: 9525823)
Troudi A, Bouaziz H, Soudani N et al (2012) Neurotoxicity and oxidative stress induced by gibberellic acid in rats during late pregnancy and early postnatal periods: biochemical and histological changes. Exp Toxicol Pathol 64:583–590. (PMID: 21216576)
Volpe JJ (2009) Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol 24:1085–1104. (PMID: 197450852799249)
Wang SS-H, Kloth AD, Badura A (2014) The cerebellum, sensitive periods, and autism. Neuron 83:518–532. (PMID: 2510255825102558)
Wardill HR, Mander KA, Van Sebille YZ et al (2016) Cytokine-mediated blood brain barrier disruption as a conduit for cancer/chemotherapy-associated neurotoxicity and cognitive dysfunction. Int J Cancer 139:2635–2645. (PMID: 27367824)
Westerga J, Gramsbergen A (1993) Development of locomotion in the rat: the significance of early movements. Early Human Dev 34:89–100.
Yamada K, Watanabe M (2002) Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells. Anat Sci Int 77:94–108. (PMID: 12418089)
Yamamoto H, Ozaki T, Nakanishi M et al (2007) Oxidative stress induces p53-dependent apoptosis in hepatoblastoma cell through its nuclear translocation. Genes Cells 12:461–471. (PMID: 17397394)
Contributed Indexing:
Keywords: Cerebellum; Cisplatin; Oxidative stress; Postnatal rats
Substance Nomenclature:
Q20Q21Q62J (Cisplatin)
Entry Date(s):
Date Created: 20210813 Date Completed: 20220107 Latest Revision: 20220531
Update Code:
20240105
DOI:
10.1007/s12565-021-00624-9
PMID:
34386931
Czasopismo naukowe
The central neurotoxicity of cisplatin (CisPt) has always raised questions especially during development, but few studies are available. Hence, this work was designed to assess the CisPt's impacts on the postnatal rat cerebellum via evaluation of locomotor activity, histological and immunohistochemical studies, and to focus on cerebellar oxidative stress-related alterations. Eighty newborn pups were divided into 2 equal experimental groups: the control group was kept without any treatment and CisPt-treated group received a single subcutaneous injection of CisPt (5 μg /g b.w.) in their nape at PD10. Ten rats at PD11, PD17, and PD30 ages were weighed, then deeply anesthetized and sacrificed. For locomotor assessment, 20 pups were divided equally into control and CisPt-treated groups and tested at PD11-13, PD15-17, and PD28-30 ages. CisPt-treated rats suffered from decreased motor activity and showed decreased body and cerebellar weights, reduced levels of enzymatic antioxidants (SOD and CAT), and non-enzymatic antioxidant defense (GSH), and increase of lipid peroxidation marker (MDA). Histopathologically, CisPt sowed deleterious changes within cerebellar cortical layers in the form of vacuolations, decreased thickness, and hemorrhage (in PD17), while Purkinje cells exhibited profound degenerative changes in the form of swelling, disrupted arrangement, distortion, and nuclear shrinkage. In CisPt-treated rats, GFAP demonstrated upregulated, hypertrophied, and branched Bergmann glial fibers and reactive astrogliosis. Immuno-localization of Ki-67-positive cells revealed defective migration associated with decreased proliferation in early ages in addition to glial proliferation in PD30. In conclusion, CisPt causes oxidative stress-related deleterious effects on structure of developing cerebellar cortex and affects locomotor activity.
(© 2021. Japanese Association of Anatomists.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies