Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Mitigation of ruminal methane production with enhancing the fermentation by supplementation of different tropical forage legumes.

Tytuł:
Mitigation of ruminal methane production with enhancing the fermentation by supplementation of different tropical forage legumes.
Autorzy:
Aragadvay-Yungán RG; Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato, Sector el Tambo-La Universidad, Vía a Quero, 1801334, Cevallos, Ambato, Ecuador.
Barros-Rodríguez M; Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato, Sector el Tambo-La Universidad, Vía a Quero, 1801334, Cevallos, Ambato, Ecuador. ma_.
Ortiz L; Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Cuidad Universitaria, 28040, Madrid, Spain.
Carro MD; Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agraria, Agroalimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040, Madrid, Spain.
Navarro Marcos C; Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agraria, Agroalimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040, Madrid, Spain.
Elghandour MMMY; Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico.
Salem AZM; Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico. .
Źródło:
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2022 Jan; Vol. 29 (3), pp. 3438-3445. Date of Electronic Publication: 2021 Aug 13.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
MeSH Terms:
Fabaceae*
Rumen*/metabolism
Animal Feed/analysis ; Animals ; Diet ; Dietary Supplements/analysis ; Digestion ; Fermentation ; Methane/metabolism ; Sheep
References:
AOAC (1999) Official Methods of Analysis, 16th edition, 5th revision. AOAC International, Gaithersburg, MD.
Barros-Rodríguez MA, Solorio-Sánchez FJ, Sandoval-Castro CA, Klieve A, Rojas-Herrera RA, Briceño-Poot EG, Ku-Vera JC (2015) Rumen function in vivo and in vitro in sheep fed Leucaena leucocephala. Trop Anim Health Prod 47:757–764. https://doi.org/10.1007/s11250-015-0790-y. (PMID: 10.1007/s11250-015-0790-y)
Bhatta R, Saravanan M, Baruah L, Prasad CS (2015) Effects of graded levels of tannin-containing tropical tree leaves on in vitro rumen fermentation, total protozoa and methane production. J Appl Microbiol 118:557–564. https://doi.org/10.1111/jam.12723. (PMID: 10.1111/jam.12723)
Broadhurst RB, Jones WT (1978) Analysis of condensed tannins using acidified vanillin. J Sci Food Agric 29:788–794. https://doi.org/10.1002/jsfa.2740290908. (PMID: 10.1002/jsfa.2740290908)
Carro MD, Lebzien P, Rohr K (1992) Influence of yeast culture on the in vitro fermentation (Rusitec) of diets containing variable portions of concentrates. Anim Feed Sci Technol 37:209–220. https://doi.org/10.1016/0377-8401(92)90005-Q. (PMID: 10.1016/0377-8401(92)90005-Q)
Carulla JE, Kreuzer M, Machmüller A, Hess HD (2005) Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust J Agric Res 56:961. https://doi.org/10.1071/AR05022. (PMID: 10.1071/AR05022)
Cieslak A, Szumacher-Strabel M, Stochmal A, Oleszek W (2013) Plant components with specific activities against rumen methanogens. Animal. 7:253–265. https://doi.org/10.1017/S1751731113000852. (PMID: 10.1017/S1751731113000852)
De Souza GF, Bannink A, Mayorga OL, Latin América Methane Project Collaborators, Nikolov A (2021) Enteric methane mitigation strategies for ruminant livestock systems in the Latin America and Caribbean region: a meta-analysis. https://doi.org/10.1016/j.jclepro.2021.127693.
Demeyer DI (1991) Quantitative aspects of microbial metabolism in the rumen and hindgut. In: Jouany JP (ed) Rumen microbial metabolism and ruminant digestion, INRA Editions, Paris, pp 217–237.
Gemeda BS, Hassen A (2015) Effect of tannin and species variation on in vitro digestibility, gas, and methane production of tropical browse plants. Asian Australas J Anim Sci 28:188–199. https://doi.org/10.5713/ajas.14.0325. (PMID: 10.5713/ajas.14.0325)
Gerber PJ, Hristov AN, Henderson B, Makkar H, Oh J, Lee C et al (2013) Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal. 7:220–234. https://doi.org/10.1017/S1751731113000876.
Getachew G, Pittroff W, Putnam DH, Dandekar A, Goyal S, DePeters EJ (2008) The influence of addition of gallic acid, tannic acid, or quebracho tannins to alfalfa hay on in vitro rumen fermentation and microbial protein synthesis. Anim Feed Sci Technol 140:444–461. https://doi.org/10.1016/j.anifeedsci.2007.03.011. (PMID: 10.1016/j.anifeedsci.2007.03.011)
Goering HK, Van Soest PJ (1970) Forage fiber analysis. Agricultural handbook no. 379. US Department of Agriculture, Washington, DC, pp 1–20.
Gunjan G, Makkar HPS (2012) Methane mitigation from ruminants using tannins and saponins. Trop Anim Health Prod 44:729–739. https://doi.org/10.1007/s11250-011-9966-2.
Hess HD, Monsalve LM, Lascano CE, Carulla JE, Diaz TE, Kreuzer M (2003) Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: effects on in vitro ruminal nitrogen turnover and methanogenesis. Aust J Agric Res 54:703. https://doi.org/10.1071/AR02241. (PMID: 10.1071/AR02241)
Huyen NT, Fryganas C, Uittenbogaard G, Mueller-Harvey I, Verstegen MWA, Hendriks WH, Pellikaan WF (2016) Structural features of condensed tannins affect in vitro ruminal methane production and fermentation characteristics. J Agric Sci 154:1474–1487. https://doi.org/10.1017/S0021859616000393. (PMID: 10.1017/S0021859616000393)
Janssen PH (2010) Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol 160:1–22. https://doi.org/10.1016/j.anifeedsci.2010.07.002. (PMID: 10.1016/j.anifeedsci.2010.07.002)
Jayanegara A, Leiber F, Kreuzer M (2012) Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. https://doi.org/10.1111/j.1439-0396.2011.01172.x.
Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73:2483–2492. https://doi.org/10.2527/1995.7382483x. (PMID: 10.2527/1995.7382483x)
Krishnamoorthy U, Soller H, Steingass H, Menke KH (1991) A comparative study on rumen fermentation of energy supplements in vitro. J Anim Physiol Anim Nutr 65:28–35. https://doi.org/10.1111/j.1439-0396.1991.tb00237.x. (PMID: 10.1111/j.1439-0396.1991.tb00237.x)
Ku-Vera JC, Valencia-Salazar SS, Piñeiro-Vázquez AT, Molina-Botero IC, Arroyave-Jaramillo J, Montoya-Flores MD et al (2018) Determination of methane yield in cattle fed tropical grasses as measured in open-circuit respiration chambers. Agric For Meteorol 258:3–7. https://doi.org/10.1016/j.agrformet.2018.01.008. (PMID: 10.1016/j.agrformet.2018.01.008)
Makkar HPS (2003) Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin Res 49:241–256. https://doi.org/10.1016/S0921-4488(03)00142-1. (PMID: 10.1016/S0921-4488(03)00142-1)
Martínez ME, Ranilla MJ, Tejido ML, Saro C, Carro MD (2010) The effect of the diet fed to donor sheep on in vitro methane production and ruminal fermentation of diets of variable composition. Anim Feed Sci Technol 158:126–135. https://doi.org/10.1016/j.anifeedsci.2010.04.005. (PMID: 10.1016/j.anifeedsci.2010.04.005)
Molina-Alcaide E, Carro MD, Roleda MY, Weisbjerg MR, Lind V, Novoa-Garrido M (2017) In vitro ruminal fermentation and methane production of different seaweed species. Anim Feed Sci Technol 228:1–12. https://doi.org/10.1016/j.anifeedsci.2017.03.012. (PMID: 10.1016/j.anifeedsci.2017.03.012)
Moss AR, Jouany JP, Newbold J (2000) Methane production by ruminants: its contribution to global warming. In: Annales de zootechnie, vol 49. EDP Sciences, Les Ulis, pp 231–253. https://doi.org/10.1051/animres:2000119. (PMID: 10.1051/animres:2000119)
Puchala R, Min BR, Goetsch AL, Sahlu T (2005) The effect of a condensed tannin-containing forage on methane emission by goats. J Anim Sci 83(1):182–186. (PMID: 10.2527/2005.831182x)
Rira M, Morgavi DP, Archimède H, Marie-Magdeleine C, Popova M, Bousseboua H, Doreau M (2015) Potential of tannin-rich plants for modulating ruminal microbes and ruminal fermentation in sheep. J Anim Sci 93:334–347. https://doi.org/10.2527/jas.2014-7961. (PMID: 10.2527/jas.2014-7961)
Sejian V, Lal R, Lakritz J, Ezeji T (2011) Measurement and prediction of enteric methane emission. Int J Biometeorol 55(1):1–16. (PMID: 10.1007/s00484-010-0356-7)
Torres AJFJ, Alonso DMA, Hoste H, Sandoval CCA, Aguilar CAJ (2008) Positive and negative effects in goat production arising from the intake of tannin rich forage. Trop Subtrop Agroecosyst 9:83–90.
Van Soest PV, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2. (PMID: 10.3168/jds.S0022-0302(91)78551-2)
Wang M, Sun XZ, Janssen PH, Tang SX, Tan ZL (2014) Responses of methane production and fermentation pathways to the increased dissolved hydrogen concentration generated by eight substrates in in vitro ruminal cultures. Anim Feed Sci Technol 194:1–11. https://doi.org/10.1016/j.anifeedsci.2014.04.012. (PMID: 10.1016/j.anifeedsci.2014.04.012)
Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974. https://doi.org/10.1021/ac60252a045. (PMID: 10.1021/ac60252a045)
Wischer G, Greiling AM, Boguhn J, Steingass H, Schllenberger M, Hartung K, Rodehutscord M (2014) Effects of long-term supplementation of chestnut and valonea extracts on methane release, digestibility and nitrogen excretion in sheep. Animal 8:938–948. https://doi.org/10.1017/S1751731114000639.
Contributed Indexing:
Keywords: Degradability; Gas production; Methane production; Rumen fermentation; Tannins; Tropical forages
Substance Nomenclature:
OP0UW79H66 (Methane)
Entry Date(s):
Date Created: 20210813 Date Completed: 20220111 Latest Revision: 20220111
Update Code:
20240105
DOI:
10.1007/s11356-021-15749-7
PMID:
34387819
Czasopismo naukowe
The aim of this research was to evaluate the influence of forage species adapted to the tropical region of Ecuador on gas production, enteric methane, digestion, and ruminal fermentation. The tree forage evaluated were C. arborea, E. fusca, B. forficata, E. poeppigiana, C. argentea, G. sepium, C. tora, and F. macrophylla. Ruminal fluid of four adult sheep fistulated with permanent cannulas in the rumen was used in the in vitro gas production technique. The in vitro gas production parameters were lower (P < 0.05) in the C. arborea (A = 41.68 mL gas/g DM, c = 0.044%/h and Lag = 1.654 h) and the average gas production rate for B. forficata was 1.017 mL/h (P < 0.05). C. arborea presented higher (P = 0.0001) effective degradation and real DM digestibility (40.461 g/kg and 82.51 mg/g, respectively). With respect to VFA, the highest (P < 0.05) proportion of acetic, propionic, and butyric was observed in C. arborea, G. sepium, and E. poeppigiana (72.52, 23.09, and 7.44 mol/100 mol, respectively) and the lowest (P = 0.0001) ratio: acetic/propionic was observed in G. sepium (2.92 mol/100 mol). The content of NH 3 -N (mg/L) showed no difference. The lowest (P = 0.0001) methane production was observed in C. arborea (1.23 mL CH 4 /g DM). The use of forage species of tropical climate rich in secondary metabolites in ruminant diets has the capacity to reduce the gas production and enteric methane; however, this is at the expense of the reduction of the fermentation of organic matter in the rumen.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies