Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Regulation of the Tpo, Tg, Duox2, Pds, and Mct8 genes involved in the synthesis of thyroid hormones after subchronic exposure to sodium nitrate in female Wistar rats.

Tytuł:
Regulation of the Tpo, Tg, Duox2, Pds, and Mct8 genes involved in the synthesis of thyroid hormones after subchronic exposure to sodium nitrate in female Wistar rats.
Autorzy:
Ríos-Sánchez E; Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico.
González-Zamora A; Laboratorio de Biología Evolutiva. Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico.
Gonsebatt Bonaparte ME; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
Meza Mata E; Departamento de Patología, Unidad Médica de Alta Especialidad #71. Instituto Mexicano del Seguro Social, Torreón, Mexico.
González-Delgado MF; Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico.
Zámago Amaro A; Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico.
Pérez-Morales R; Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico.
Źródło:
Environmental toxicology [Environ Toxicol] 2021 Dec; Vol. 36 (12), pp. 2380-2391. Date of Electronic Publication: 2021 Aug 18.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: New York, NY : John Wiley & Sons, c1999-
MeSH Terms:
Nitrates*
Thyroid Hormones*
Animals ; Dual Oxidases ; Female ; Rats ; Rats, Wistar
References:
Wu J, Lu J, Wen X, Zhang Z, Lin Y. Severe nitrate pollution and health risks of coastal aquifer simultaneously influenced by saltwater intrusion and intensive anthropogenic activities. Arch Environ Contam Toxicol. 2019;77(1):79-87. doi:10.1007/s00244-019-00636-7.
World Health Organization. Guideline for Drinking Water Quality, 4th Ed. Incorporating the First Addendum. Geneva, Switzerland: World Health Organization; 2017.
Rezvani F, Sarrafzadeh MH, Ebrahimi S, Oh HM. Nitrate removal from drinking water with a focus on biological methods: a review. Environ Sci Pollut Res. 2019;26(2):1124-1141. doi:10.1007/s11356-017-9185-0.
Qiu W, Wang Z, Huang C, Chen B, Yang R. Nitrate accumulation in leafy vegetables and its relationship with water. J Soil Sci Plant Nutr. 2014;14(4):761-768. doi:10.4067/S0718-95162014005000061.
Ward MH, Jones RR, Brender JD, et al. Drinking water nitrate and human health: an updated review. Int J Environ Res Public Health. 2018;15(7):1557. doi:10.3390/ijerph15071557.
Khatri J, Mills CE, Maskell P, Odongerel C, Webb AJ. It is rocket science-why dietary nitrate is hard to “beet”! Part I: twists and turns in the realization of the nitrate-nitrite-NO pathway. Br J Clin Pharmacol. 2016;83(1):129-139. doi:10.1111/bcp.12913.
Eskiocak S, Dundar C, Basoglu T, Altaner S. The effects of taking chronic nitrate by drinking water on thyroid functions and morphology. Clin Exp Med. 2005;5(2):66-71. doi:10.1007/s10238-005-0068-1.
Bahadoran Z, Mirmiran P, Ghasemi A, Kabir A, Azizi F, Hadaegh F. Is dietary nitrate/nitrite exposure a risk factor for development of thyroid abnormality? A systematic review and meta-analysis. Nitric Oxide. 2015;47:65-76. doi:10.1016/j.niox.2015.04.002.
Pleus RC, Corey LM. Environmental exposure to perchlorate: a review of toxicology and human health. Toxicol Appl Pharmacol. 2018;358:102-109. doi:10.1016/j.taap.2018.09.001.
Gavrila A, Hollenberg AN. The hypothalamic-pituitary-thyroid axis: physiological regulation and clinical implications. In: Luster M, Duntas L, Wartofsky L, eds. The Thyroid and its Diseases. Cham: Springer; 2019. doi:10.1007/978-3-319-72102-6_2.
Carvalho DP, Dupuy C. Thyroid hormone biosynthesis and release. Mol Cell Endocrinol. 2017;458:6-15. doi:10.1016/j.mce.2017.01.038.
Shinohara DR, da Silva Santos T, de Carvalho HC, et al. Pregnancy complications associated with maternal hypothyroidism: a systematic review. Obstet Gynecol Surv. 2018;73(4):219-230. doi:10.1097/OGX.0000000000000547.
Sinha RA, Singh BK, Yen PM. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat Rev Endocrinol. 2018;14(5):259. doi:10.1038/nrendo.2018.10.
García-Torres E, Pérez Morales R, González Zamora A, et al. Consumption of water contaminated by nitrate and its deleterious effects on the human thyroid gland: a review and update. Int J Environ Health Res. 2020;1-18. doi:10.1080/09603123.2020.1815664.
Eskandari S, Loo DDF, Dai G, Levy O, Wright EM, Carrasco N. Thyroid Na+/I− symporter mechanism, stoichiometry, and specificity. J Biol Chem. 1997;272(43):27230-27238. doi:10.1074/jbc.272.43.27230.
Dayton A, Exner EC, Bukowy JD, et al. Breaking the cycle: estrous variation does not require increased sample size in the study of female rats. Hypertension. 2016;68(5):1139-1144. doi:10.1161/HYPERTENSIONAHA.116.08207.
González Delgado MF, González Zamora A, Gonsebatt ME, et al. Subacute intoxication with sodium nitrate induces hematological and biochemical alterations and liver injury in male Wistar rats. Ecotoxicol Environ Saf. 2018;166:48-55. doi:10.1016/j.ecoenv.2018.09.060.
Sakata M, Yoshida A, Haga M. Methemoglobin in blood as determined by double-wavelength spectrophotometry. Clin Chem. 1982;28(3):508-511. doi:10.1093/clinchem/28.3.508.
Moshage H, Kok B, Huizenga JR, Jansen PL. Nitrite and nitrate determinations in plasma: a critical evaluation. Clin Chem. 1995;41(6):892-896. doi:10.1093/clinchem/41.6.892.
Anwar MM, Mohamed NE. Amelioration of liver and kidney functions disorders induced by sodium nitrate in rats using wheat germ oil. J Radiat Res Appl Sci. 2015;8(1):77-83. doi:10.1016/j.jrras.2014.11.004.
Daam MA, Ilha P, Schiesari L. Acute toxicity of inorganic nitrogen (ammonium, nitrate and nitrite) to tadpoles of five tropical amphibian species. Ecotoxicology. 2020;29:1-6. doi:10.1007/s10646-020-02247-8.
Springer D, Jiskra J, Limanova Z, Zima T, Potlukova E. Thyroid in pregnancy: from physiology to screening. Crit Rev Clin Lab Sci. 2017;54(2):102-116. doi:10.1080/10408363.2016.1269309.
Cano-Rocabayera O, de Sostoa A, Padrós F, Cárdenas L, Maceda-Veiga A. Ecologically relevant biomarkers reveal that chronic effects of nitrate depend on sex and life stage in the invasive fish Gambusia holbrooki. PLOS One. 2019;14(1):1-18. doi:10.1371/journal.pone.0211389.
Chauhan V, Thakur A, Sharma G. Abortion may be associated with elevated risk of future hypothyroidism. Int J Crit Illn Inj Sci. 2018;8(1):41-43. doi:10.4103/IJCIIS.IJCIIS_43_17.
Garmendia Madariaga A, Santos Palacios S, Guillén-Grima F, Galofré JC. The incidence and prevalence of thyroid dysfunction in Europe: a meta-analysis. J Clin Endocrinol Metab. 2014;99(3):923-931. doi:10.1210/jc.2013-2409.
Srivastava S, Alhomida AS, Siddiqi NJ, Puri SK, Pandey VC. Methemoglobin reductase activity and in vitro sensitivity towards oxidant induced methemoglobinemia in Swiss mice and beagle dogs erythrocytes. Mol Cell Biochem. 2002;232(1-2):81-85. doi:10.1023/A:1014853421871.
van Breda SG, Mathijs K, Sági-Kiss V, et al. Impact of high drinking water nitrate levels on the endogenous formation of apparent N-nitroso compounds in combination with meat intake in healthy volunteers. Environ Health. 2019;18(1):87. doi:10.1186/s12940-019-0525-z.
Sweeney LB, Stewart C, Gaitonde DY. Thyroiditis: an integrated approach. Am Family Phys. 2014;90(6):389-396.
Dorafshani MM, Nikravesh MR, Jalali M, Soukhtanloo M. Effect of drinking water nitrates and vitamin C on rat liver enzymes and oxidative markers. Iran Red Crescent Med J. 2018;20(11):1-8. doi:10.5812/ircmj.83094.
Tonacchera M, Pinchera A, Dimida A, et al. Relative potencies and additivity of perchlorate, thiocyanate, nitrate, and iodide on the inhibition of radioactive iodide uptake by the human sodium iodide symporter. Thyroid. 2004;14(12):1012-1019. doi:10.1089/thy.2004.14.1012.
Eisenbrand G, Gelbke HP. Assessing the potential impact on the thyroid axis of environmentally relevant food constituents/contaminants in humans. Arch Toxicol. 2016;90(8):1841-1857. doi:10.1007/s00204-016-1735-6.
Luongo C, Dentice M, Salvatore D. Deiodinases and their intricate role in thyroid hormone homeostasis. Nat Rev Endocrinol. 2019;15(8):479-488. doi:10.1038/s41574-019-0218-2.
Kostogrys RB, Pisulewski PM, Pecio A. Nitrates affect thyroid status and serum triacylglycerols in Wistar rats. Polish J Food Nutrit Sci. 2006;15(1):71-76.
Manassaram DM, Backer LC, Moll DM. A review of nitrates in drinking water: maternal exposure and adverse reproductive and developmental outcomes. Environ Health Perspect. 2006;114(3):320-327. doi:10.1289/ehp.8407.
Edwards TM, Hamlin HJ. Reproductive endocrinology of environmental nitrate. Gen Comp Endocrinol. 2018;265:31-40. doi:10.1016/j.ygcen.2018.03.021.
Paredes I, Otero N, Soler A, Green AJ, Soto DX. Agricultural and urban delivered nitrate pollution input to Mediterranean temporary freshwaters. Agric Ecosyst Environ. 2020;294:106859. doi:10.1016/j.agee.2020.106859.
Grant Information:
467347 Consejo Nacional de Ciencia y Tecnología; Sistema Nacional de Investigadores of CONACYT; Doctorado en Ciencias Biomédicas of the UJED
Contributed Indexing:
Keywords: disruptor hormones; gene expression; liver; nitrate; thyroid
Substance Nomenclature:
0 (Nitrates)
0 (Thyroid Hormones)
8M4L3H2ZVZ (sodium nitrate)
EC 1.11.1.- (Dual Oxidases)
Entry Date(s):
Date Created: 20210819 Date Completed: 20211104 Latest Revision: 20211104
Update Code:
20240104
DOI:
10.1002/tox.23351
PMID:
34409734
Czasopismo naukowe
Nitrates are natural compounds present in soil and water; however, the intense use of fertilizers has increased their presence in groundwater with deleterious effects on human health. There is evidence of nitrates acting as endocrine disruptors; however, the underlying molecular mechanisms have not been fully described. Here, we investigated the effect of subchronic exposure to different concentrations of sodium nitrate in female Wistar rats, evaluating thyroid hormonal parameters, such as Nis transporter (Na + /I - symporter, Slc5a5) and Tsh-R receptor protein expression, as well as transcription of the Tpo (thyroperoxidase), Tg (tiroglobulin), Duox2 (dual oxidase 2), Pds (pendrin), and Mct8 (Mct8 transporter, Slc16a2) genes. Hematological and histochemical changes in the liver and thyroid were also explored. Significant differences were found in platelet and leukocyte counts; although a significant increase in the weight of the thyroid gland was observed, no differences were found in the levels of the hormones Tsh, T3, and T4, but a modulation of the mRNA expression of the Tg, Tpo, Duox2, Mct8, and Pds genes was observed. Morphological changes were also found in liver and thyroid tissue according to the exposure doses. In conclusion, subchronic exposure to sodium nitrate induces leukocytosis consistent with an inflammatory response and upregulation of Sod2 in the liver and increases the expression of genes involved in the synthesis of thyroid hormones, keeping thyroid hormone levels stable. Histological changes in the thyroid gland suggest a goitrogenic effect.
(© 2021 Wiley Periodicals LLC.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies