Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Autophagy Promoted Neural Differentiation of Human Placenta-derived Mesenchymal Stem Cells.

Tytuł:
Autophagy Promoted Neural Differentiation of Human Placenta-derived Mesenchymal Stem Cells.
Autorzy:
Sotthibundhu A; Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand.
Muangchan P; Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
Phonchai R; Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
Promjantuek W; Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
Chaicharoenaudomrung N; Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
Kunhorm P; Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
Noisa P; Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand .
Źródło:
In vivo (Athens, Greece) [In Vivo] 2021 Sep-Oct; Vol. 35 (5), pp. 2609-2620.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2000- > : Attiki, Greece : International Institute of Anticancer Research
Original Publication: Athens : Dr. J.G. Delinassios
MeSH Terms:
Mesenchymal Stem Cells*
Autophagy ; Cell Differentiation ; Female ; Humans ; Neurogenesis ; Placenta ; Pregnancy
References:
Nat Neurosci. 2008 Nov;11(11):1247-51. (PMID: 18956012)
Stem Cells Int. 2012;2012:174328. (PMID: 22550499)
Methods. 2002 Jun;27(2):179-83. (PMID: 12095278)
Cell Death Dis. 2018 Apr 27;9(5):468. (PMID: 29700299)
Front Cell Neurosci. 2019 Apr 04;13:120. (PMID: 31019453)
Neurosci Lett. 2013 Oct 25;554:22-7. (PMID: 24021810)
J Mol Neurosci. 2011 Jul;44(3):186-94. (PMID: 21360053)
EMBO J. 2000 Nov 1;19(21):5720-8. (PMID: 11060023)
Cell Death Dis. 2019 Jul 18;10(8):552. (PMID: 31320610)
Cell Tissue Res. 2018 Apr;372(1):51-65. (PMID: 29204746)
Tsitologiia. 2013;55(2):101-10. (PMID: 23718072)
Mol Cell Biochem. 2014 Oct;395(1-2):291-8. (PMID: 24972705)
Rom J Morphol Embryol. 2015;56(3):989-96. (PMID: 26662130)
Cell Mol Life Sci. 2015 Apr;72(8):1559-76. (PMID: 25558812)
Eur J Immunol. 2001 Nov;31(11):3240-7. (PMID: 11745340)
Philos Trans R Soc Lond B Biol Sci. 2010 Jan 12;365(1537):155-63. (PMID: 20008393)
DNA Cell Biol. 2013 Feb;32(2):58-65. (PMID: 23323927)
Mol Psychiatry. 2015 Aug;20(8):941-50. (PMID: 25707399)
Biomolecules. 2020 Dec 10;10(12):. (PMID: 33322066)
Mol Cell Biol. 2010 Apr;30(8):1946-57. (PMID: 20154142)
Bone. 2010 Feb;46(2):274-80. (PMID: 19520195)
Oncotarget. 2016 May 10;7(19):27363-78. (PMID: 27036028)
Cell Cycle. 2011 Jul 15;10(14):2339-43. (PMID: 21654192)
Oncol Lett. 2016 Sep;12(3):1826-1832. (PMID: 27588130)
Tissue Eng Regen Med. 2017 Mar 2;14(2):143-151. (PMID: 30603471)
Brain Res. 2016 Mar 1;1634:34-44. (PMID: 26607252)
Curr Med Chem. 2012;19(30):5170-7. (PMID: 22934763)
Bone. 2013 Jan;52(1):524-31. (PMID: 23111315)
Cytotechnology. 2012 Dec;64(6):701-10. (PMID: 22526490)
Genes Dev. 2007 Nov 15;21(22):2861-73. (PMID: 18006683)
J Vis Exp. 2017 Apr 3;(122):. (PMID: 28447991)
J Cell Sci. 2014 May 1;127(Pt 9):2083-94. (PMID: 24569875)
Stem Cells Dev. 2013 Feb 1;22(3):374-82. (PMID: 23020188)
Eur J Oral Sci. 2005 Aug;113(4):312-7. (PMID: 16048523)
Nat Rev Mol Cell Biol. 2011 Feb;12(2):126-31. (PMID: 21253000)
Genes Dev. 2014 Mar 15;28(6):652-64. (PMID: 24637118)
Stem Cells Dev. 2012 Mar 1;21(4):513-20. (PMID: 22066548)
World J Stem Cells. 2015 May 26;7(4):769-75. (PMID: 26029347)
Front Pharmacol. 2017 Apr 26;8:204. (PMID: 28491035)
Neuroreport. 2002 Jul 2;13(9):1185-8. (PMID: 12151766)
Glia. 2019 Sep;67(9):1745-1759. (PMID: 31162728)
World J Stem Cells. 2010 Aug 26;2(4):67-80. (PMID: 21607123)
Placenta. 2017 Aug;56:65-72. (PMID: 28117145)
Cell Signal. 2008 Apr;20(4):659-65. (PMID: 18207367)
J Vis Exp. 2016 Jun 06;(112):. (PMID: 27340821)
Mol Biol Cell. 2004 Mar;15(3):1101-11. (PMID: 14699058)
Cell. 1999 Jan 8;96(1):25-34. (PMID: 9989494)
Neural Regen Res. 2013 Apr 5;8(10):882-9. (PMID: 25206379)
Tissue Eng Part A. 2008 Jan;14(1):9-17. (PMID: 18333820)
Blood. 2013 Oct 3;122(14):2467-76. (PMID: 23970379)
Histochem Cell Biol. 2010 Jan;133(1):95-112. (PMID: 19816704)
Front Cell Neurosci. 2015 Jun 17;9:218. (PMID: 26136659)
Cytotherapy. 2015 Jan;17(1):18-24. (PMID: 25442786)
J Neurochem. 2008 Sep;106(5):2236-48. (PMID: 18662245)
Exp Neurobiol. 2019 Apr;28(2):229-246. (PMID: 31138991)
Basic Res Cardiol. 2015 May;110(3):29. (PMID: 25893875)
Contributed Indexing:
Keywords: Human placenta; autophagy; mesenchymal stem cells; neural differentiation; notch signaling
Entry Date(s):
Date Created: 20210819 Date Completed: 20210823 Latest Revision: 20210929
Update Code:
20240104
PubMed Central ID:
PMC8408712
DOI:
10.21873/invivo.12543
PMID:
34410948
Czasopismo naukowe
Background/aim: Human placenta-derived mesenchymal stem cells (hPMSCs) are multipotent and possess neurogenicity. Numerous studies have shown that Notch inhibition and DNA demethylation promote neural differentiation. Here, we investigated the modulation of autophagy during neural differentiation of hPMSCs, induced by DAPT and 5-Azacytidine.
Materials and Methods: hPMSCs were treated with DAPT to induce neural differentiation, and the autophagy regulating molecules were used to assess the impact of autophagy on neural differentiation.
Results: The hPMSCs presented with typical mesenchymal stem cell phenotypes, in which the majority of cells expressed CD73, CD90 and CD105. hPMSCs were multipotent, capable of differentiating into mesodermal cells. After treatment with DAPT, hPMSCs upregulated the expression of neuronal genes including SOX2, Nestin, and βIII-tubulin, and the autophagy genes LC3I/II and Beclin. These genes were further increased when 5-Azacytidine was co-supplemented in the culture medium. The inhibition of autophagy by chloroquine impeded the neural differentiation of hPMSCs, marked by the downregulation of βIII-tubulin, while the activation of autophagy by valproic acid (VPA) instigated the emergence of βIII-tubulin-positive cells.
Conclusion: During the differentiation process, autophagy was modulated, implying that autophagy could play a significant role during the differentiation of these cells. The blockage and stimulation of autophagy could either hinder or induce the formation of neural-like cells, respectively. Therefore, the refinement of autophagic activity at an appropriate level might improve the efficiency of stem cell differentiation.
(Copyright © 2021 International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies