Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

An oomycete effector subverts host vesicle trafficking to channel starvation-induced autophagy to the pathogen interface.

Tytuł:
An oomycete effector subverts host vesicle trafficking to channel starvation-induced autophagy to the pathogen interface.
Autorzy:
Pandey P; Imperial College London, London, United Kingdom.
Leary AY; Imperial College London, London, United Kingdom.
Tumtas Y; Imperial College London, London, United Kingdom.
Savage Z; Imperial College London, London, United Kingdom.
Dagvadorj B; Imperial College London, London, United Kingdom.
Duggan C; Imperial College London, London, United Kingdom.
Yuen EL; Imperial College London, London, United Kingdom.
Sanguankiattichai N; Imperial College London, London, United Kingdom.
Tan E; Imperial College London, London, United Kingdom.
Khandare V; Imperial College London, London, United Kingdom.
Connerton AJ; Imperial College London, London, United Kingdom.
Yunusov T; Sainsbury Laboratory Cambridge University (SLCU), Cambridge, United Kingdom.
Madalinski M; Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.
Mirkin FG; Imperial College London, London, United Kingdom.; Sainsbury Laboratory Cambridge University (SLCU), Cambridge, United Kingdom.; Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.; INGEBI-CONICET, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina.
Schornack S; Sainsbury Laboratory Cambridge University (SLCU), Cambridge, United Kingdom.
Dagdas Y; Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.
Kamoun S; The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom.
Bozkurt TO; Imperial College London, London, United Kingdom.
Źródło:
ELife [Elife] 2021 Aug 23; Vol. 10. Date of Electronic Publication: 2021 Aug 23.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Cambridge, UK : eLife Sciences Publications, Ltd., 2012-
MeSH Terms:
Host-Pathogen Interactions*
Fungal Proteins/*genetics
Phytophthora infestans/*physiology
Plant Proteins/*genetics
Solanum tuberosum/*genetics
Autophagy ; Fungal Proteins/metabolism ; Plant Diseases/microbiology ; Plant Proteins/metabolism ; Solanum tuberosum/metabolism ; Solanum tuberosum/microbiology
References:
Science. 1985 Mar 8;227(4691):1229-31. (PMID: 17757866)
PLoS One. 2011 Jan 27;6(1):e16608. (PMID: 21304602)
Cell. 2019 Jul 25;178(3):552-566.e20. (PMID: 31327526)
Traffic. 2015 Feb;16(2):204-26. (PMID: 25430691)
Dev Cell. 2013 Apr 29;25(2):116-7. (PMID: 23639440)
Plant Cell. 2015 Sep;27(9):2616-36. (PMID: 26362606)
Plant Cell. 2019 Jul;31(7):1598-1613. (PMID: 31036588)
Plant Physiol. 2018 Jan;176(1):649-662. (PMID: 29133371)
Trends Mol Med. 2016 Dec;22(12):1060-1076. (PMID: 27866924)
Annu Rev Genet. 2009;43:67-93. (PMID: 19653858)
J Cell Sci. 2012 Nov 1;125(Pt 21):5026-39. (PMID: 22854040)
Plant J. 2007 Sep;51(6):1126-36. (PMID: 17666025)
PLoS Biol. 2019 Jul 22;17(7):e3000373. (PMID: 31329577)
Curr Biol. 2014 Mar 17;24(6):609-20. (PMID: 24613307)
Elife. 2014 Feb 11;3:e01623. (PMID: 24520163)
Plant Cell. 2020 Sep;32(9):2932-2950. (PMID: 32690719)
J Biol Chem. 2013 Feb 22;288(8):6014-23. (PMID: 23297417)
Sci Adv. 2021 Apr 23;7(17):. (PMID: 33893090)
Science. 2009 May 8;324(5928):748-50. (PMID: 19423815)
Plant Physiol. 2009 Apr;149(4):1824-37. (PMID: 19233904)
Annu Rev Cell Dev Biol. 2011;27:107-32. (PMID: 21801009)
Plant Physiol. 2008 Aug;147(4):1516-26. (PMID: 18678743)
Plant Cell. 2018 Mar;30(3):668-685. (PMID: 29500318)
Biochemistry (Mosc). 2016 Apr;81(4):348-63. (PMID: 27293092)
Plant Cell. 2019 Dec;31(12):2973-2995. (PMID: 31615848)
Essays Biochem. 2013;55:51-64. (PMID: 24070471)
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E2026-E2035. (PMID: 28223514)
Autophagy. 2014 Sep;10(9):1579-87. (PMID: 25046116)
Elife. 2018 Jun 22;7:. (PMID: 29932422)
J Cell Biol. 2019 Jun 3;218(6):1787-1798. (PMID: 30952800)
Elife. 2014 Feb 11;3:e02171. (PMID: 24520166)
Cell Death Differ. 2014 Mar;21(3):348-58. (PMID: 24440914)
Science. 2016 Dec 23;354(6319):1594-1597. (PMID: 27940581)
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20832-7. (PMID: 22143776)
Plant Physiol. 2018 Feb;176(2):1531-1546. (PMID: 29203558)
Curr Opin Plant Biol. 2002 Dec;5(6):518-28. (PMID: 12393015)
PLoS Genet. 2013;9(1):e1003196. (PMID: 23341779)
Curr Opin Plant Biol. 2019 Dec;52:46-53. (PMID: 31442734)
Nature. 2009 Apr 30;458(7242):1131-5. (PMID: 19339967)
J Exp Bot. 2020 Jan 1;71(1):73-89. (PMID: 31494674)
Trends Plant Sci. 2017 Mar;22(3):204-214. (PMID: 28038982)
Plant Cell. 2005 Jul;17(7):2020-36. (PMID: 15972698)
Dev Cell. 2014 Aug 25;30(4):378-93. (PMID: 25158853)
Cold Spring Harb Symp Quant Biol. 2012;77:235-47. (PMID: 23223409)
Genes Cells. 2008 Dec;13(12):1211-8. (PMID: 19021777)
Nature. 2013 Mar 21;495(7441):389-93. (PMID: 23455425)
Curr Opin Cell Biol. 2012 Aug;24(4):509-16. (PMID: 22726586)
Cell. 2011 Jul 22;146(2):290-302. (PMID: 21784249)
Nat Struct Mol Biol. 2019 Apr;26(4):281-288. (PMID: 30911189)
Cell. 2020 Jan 9;180(1):135-149.e14. (PMID: 31883797)
Nat Microbiol. 2018 Jan;3(1):17-25. (PMID: 29109477)
Elife. 2019 Jul 04;8:. (PMID: 31271352)
Curr Opin Microbiol. 2016 Dec;34:127-135. (PMID: 27723513)
J Biol Chem. 2016 Sep 16;291(38):20270-20282. (PMID: 27458016)
Nat Cell Biol. 2020 Feb;22(2):187-199. (PMID: 31932738)
EMBO J. 2015 Aug 13;34(16):2117-31. (PMID: 26162625)
J Biol Chem. 2018 Jan 5;293(1):132-147. (PMID: 29133525)
Plant Cell. 2006 Aug;18(8):1961-74. (PMID: 16877495)
J Exp Bot. 2018 Mar 14;69(6):1325-1333. (PMID: 29294077)
J Mol Biol. 2016 May 8;428(9 Pt A):1714-24. (PMID: 26876603)
Mol Biol Cell. 2017 Mar 15;28(6):712-715. (PMID: 28292916)
J Mol Biol. 2019 Jul 12;431(15):2821-2834. (PMID: 31103773)
Mol Biol Cell. 2012 Apr;23(7):1267-82. (PMID: 22323285)
Science. 2012 Nov 23;338(6110):1072-6. (PMID: 23112293)
Nature. 2013 Oct 10;502(7470):194-200. (PMID: 24089209)
Elife. 2016 Jan 14;5:. (PMID: 26765567)
Fungal Genet Biol. 1998 Mar;23(2):126-38. (PMID: 9578626)
Grant Information:
BB/M011224/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BB/M002462/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BBS/E/J 000PR9797 United Kingdom BB_ Biotechnology and Biological Sciences Research Council
Contributed Indexing:
Keywords: Phytophthora infestans; autophagy; autophagy inhibition; haustorium; nicotiana benthamiana; plant biology
Local Abstract: [plain-language-summary] With its long filaments reaching deep inside its prey, the tiny fungi-like organism known as Phytophthora infestans has had a disproportionate impact on human history. Latching onto plants and feeding on their cells, it has caused large-scale starvation events such as the Irish or Highland potato famines. Many specialized proteins allow the parasite to accomplish its feat. For instance, PexRD54 helps P. infestans hijack a cellular process known as autophagy. Healthy cells use this ‘self-eating’ mechanism to break down invaders or to recycle their components, for example when they require specific nutrients. The process is set in motion by various pathways of molecular events that result in specific sac-like ‘vesicles’ filled with cargo being transported to specialized compartments for recycling. PexRD54 can take over this mechanism by activating one of the plant autophagy pathways, directing cells to form autophagic vesicles that Phytophthora could then possibly use to feed on or to destroy antimicrobial components. How or why this is the case remains poorly understood. To examine these questions, Pandey, Leary et al. used a combination of genetic and microscopy techniques and tracked how PexRD54 alters autophagy as P. infestans infects a tobacco-related plant. The results show that PexRD54 works by bridging two proteins: one is present on cellular vesicles filled with cargo, and the other on autophagic structures surrounding the parasite. This allows PexRD54 to direct the vesicles to the feeding sites of P. infestans so the parasite can potentially divert nutrients. Pandey, Leary et al. then went on to develop a molecule called the AIM peptide, which could block autophagy by mimicking part of PexRD54. These results help to better grasp how a key disease affects crops, potentially leading to new ways to protect plants without the use of pesticides. They also shed light on autophagy: ultimately, a deeper understanding of this fundamental biological process could allow the development of plants which can adapt to changing environments.
Substance Nomenclature:
0 (Fungal Proteins)
0 (Plant Proteins)
Entry Date(s):
Date Created: 20210823 Date Completed: 20211008 Latest Revision: 20220520
Update Code:
20240105
PubMed Central ID:
PMC8382295
DOI:
10.7554/eLife.65285
PMID:
34424198
Czasopismo naukowe
Eukaryotic cells deploy autophagy to eliminate invading microbes. In turn, pathogens have evolved effector proteins to counteract antimicrobial autophagy. How adapted pathogens co-opt autophagy for their own benefit is poorly understood. The Irish famine pathogen Phytophthora infestans secretes the effector protein PexRD54 that selectively activates an unknown plant autophagy pathway that antagonizes antimicrobial autophagy at the pathogen interface. Here, we show that PexRD54 induces autophagosome formation by bridging vesicles decorated by the small GTPase Rab8a with autophagic compartments labeled by the core autophagy protein ATG8CL. Rab8a is required for pathogen-triggered and starvation-induced but not antimicrobial autophagy, revealing specific trafficking pathways underpin selective autophagy. By subverting Rab8a-mediated vesicle trafficking, PexRD54 utilizes lipid droplets to facilitate biogenesis of autophagosomes diverted to pathogen feeding sites. Altogether, we show that PexRD54 mimics starvation-induced autophagy to subvert endomembrane trafficking at the host-pathogen interface, revealing how effectors bridge distinct host compartments to expedite colonization.
Competing Interests: PP, AL, YT, ZS, BD, CD, EY, NS, ET, VK, AC, TY, MM, FM, SS, YD, SK, TB No competing interests declared
(© 2021, Pandey et al.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies