Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Activity-dependent release of phosphorylated human tau from Drosophila neurons in primary culture.

Tytuł:
Activity-dependent release of phosphorylated human tau from Drosophila neurons in primary culture.
Autorzy:
Ismael S; Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA.
Sindi G; Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA.
Colvin RA; Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA.
Lee D; Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA. Electronic address: .
Źródło:
The Journal of biological chemistry [J Biol Chem] 2021 Oct; Vol. 297 (4), pp. 101108. Date of Electronic Publication: 2021 Aug 30.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 2021- : [New York, NY] : Elsevier Inc. on behalf of American Society for Biochemistry and Molecular Biology
Original Publication: Baltimore, MD : American Society for Biochemistry and Molecular Biology
MeSH Terms:
Mutation, Missense*
Alzheimer Disease/*metabolism
Neurons/*metabolism
tau Proteins/*metabolism
Alzheimer Disease/genetics ; Amino Acid Substitution ; Animals ; Cells, Cultured ; Drosophila melanogaster ; Humans ; Light ; Phosphorylation ; tau Proteins/genetics
References:
Front Mol Neurosci. 2014 May 13;7:42. (PMID: 24860424)
Arch Neurol. 2009 Apr;66(4):435-40. (PMID: 19204149)
Hum Mol Genet. 2009 Jan 1;18(1):164-77. (PMID: 18930955)
Nat Neurosci. 2018 Jul;21(7):941-951. (PMID: 29950669)
Curr Pharm Des. 2012;18(8):1108-22. (PMID: 22288402)
J Neurosci. 2015 Apr 15;35(15):6221-30. (PMID: 25878292)
Nat Neurosci. 2016 Aug;19(8):1085-92. (PMID: 27322420)
Biomolecules. 2016 Jan 06;6(1):6. (PMID: 26751493)
Cold Spring Harb Perspect Biol. 2016 Nov 1;8(11):. (PMID: 27580631)
Brain. 2006 Nov;129(Pt 11):3035-41. (PMID: 17012293)
Neurobiol Aging. 2013 Feb;34(2):374-86. (PMID: 22676853)
Annu Rev Genet. 2005;39:153-71. (PMID: 16285856)
J Neurosci. 1999 Jul 1;19(13):5311-21. (PMID: 10377342)
J Neurosci. 2010 Jan 13;30(2):464-77. (PMID: 20071510)
Lancet Neurol. 2016 Jun;15(7):673-684. (PMID: 27068280)
Neuron. 2014 Dec 3;84(5):1023-33. (PMID: 25456500)
J Biol Chem. 2012 Feb 3;287(6):3842-9. (PMID: 22057275)
Front Neurosci. 2015 Nov 04;9:423. (PMID: 26582973)
Nature. 2014 Nov 13;515(7526):274-8. (PMID: 25307057)
Cell Rep. 2018 Nov 20;25(8):2027-2035.e4. (PMID: 30463001)
Exp Neurobiol. 2017 Apr;26(2):97-103. (PMID: 28442946)
EMBO Rep. 2013 Apr;14(4):389-94. (PMID: 23412472)
Front Neurosci. 2018 Feb 06;12:44. (PMID: 29467609)
Science. 2008 Sep 19;321(5896):1686-9. (PMID: 18802001)
Nature. 2013 Sep 5;501(7465):45-51. (PMID: 24005412)
Front Neurol. 2013 Jul 01;4:83. (PMID: 23847585)
J Neurosci. 2011 Sep 14;31(37):13110-7. (PMID: 21917794)
Arch Gen Psychiatry. 2004 Jan;61(1):95-102. (PMID: 14706948)
Nat Rev Neurosci. 2016 Jan;17(1):5-21. (PMID: 26631930)
Exp Neurol. 2015 Dec;274(Pt A):52-7. (PMID: 25862286)
Neurobiol Dis. 2012 Dec;48(3):356-66. (PMID: 22668776)
Cell Rep. 2018 May 15;23(7):2039-2055. (PMID: 29768203)
Nat Neurosci. 2020 Oct;23(10):1183-1193. (PMID: 32778792)
Front Mol Neurosci. 2020 Sep 23;13:569818. (PMID: 33071756)
J Exp Med. 2014 Mar 10;211(3):387-93. (PMID: 24534188)
PLoS One. 2012;7(5):e36873. (PMID: 22615831)
J Neurochem. 2013 Aug;126(4):529-40. (PMID: 23452092)
J Neurosci. 2017 Apr 19;37(16):4323-4331. (PMID: 28314821)
Cell Death Dis. 2017 Mar 16;8(3):e2671. (PMID: 28300838)
Nat Rev Neurosci. 2002 Mar;3(3):237-43. (PMID: 11994755)
J Biol Chem. 2010 Oct 15;285(42):32539-48. (PMID: 20634292)
Eur J Neurosci. 2006 Jun;23(11):2908-14. (PMID: 16819979)
Biomol Concepts. 2018 Mar 5;9(1):1-11. (PMID: 29509544)
Sci Rep. 2014 Jul 17;4:5715. (PMID: 25030297)
Development. 1993 Jun;118(2):401-15. (PMID: 8223268)
Nat Methods. 2011 Dec 28;9(1):47-55. (PMID: 22205518)
Acta Neuropathol Commun. 2018 Jun 29;6(1):52. (PMID: 29958544)
Ann Neurol. 2019 May;85(5):726-739. (PMID: 30840313)
Front Neurosci. 2019 Jun 26;13:649. (PMID: 31293374)
Nature. 2020 Apr;580(7803):381-385. (PMID: 32296178)
Brain. 2018 Feb 1;141(2):568-581. (PMID: 29315361)
Neurology. 2005 Aug 9;65(3):404-11. (PMID: 16087905)
Microb Cell. 2016 Mar 25;3(4):135-146. (PMID: 28357346)
Lancet Neurol. 2013 Jun;12(6):609-22. (PMID: 23684085)
Front Neurosci. 2017 Nov 29;11:667. (PMID: 29238289)
J Neurosci Res. 2007 May 1;85(6):1271-8. (PMID: 17335084)
Grant Information:
R15 AG065925 United States AG NIA NIH HHS
Contributed Indexing:
Keywords: Drosophila; activity-dependent release; human tau release; phosphorylation; primary neuronal culture
Substance Nomenclature:
0 (MAPT protein, human)
0 (tau Proteins)
Entry Date(s):
Date Created: 20210902 Date Completed: 20211124 Latest Revision: 20230921
Update Code:
20240105
PubMed Central ID:
PMC8455371
DOI:
10.1016/j.jbc.2021.101108
PMID:
34473990
Czasopismo naukowe
Neuronal activity can enhance tau release and thus accelerate tauopathies. This activity-dependent tau release can be used to study the progression of tau pathology in Alzheimer's disease (AD), as hyperphosphorylated tau is implicated in AD pathogenesis and related tauopathies. However, our understanding of the mechanisms that regulate activity-dependent tau release from neurons and the role that tau phosphorylation plays in modulating activity-dependent tau release is still rudimentary. In this study, Drosophila neurons in primary culture expressing human tau (hTau) were used to study activity-dependent tau release. We found that hTau release was markedly increased by 50 mM KCl treatment for 1 h. A similar level of release was observed using optogenetic techniques, where genetically targeted neurons were stimulated for 30 min using blue light (470 nm). Our results showed that activity-dependent release of phosphoresistant hTau S11A was reduced when compared with wildtype hTau. In contrast, release of phosphomimetic hTau E14 was increased upon activation. We found that released hTau was phosphorylated in its proline-rich and C-terminal domains using phosphorylation site-specific tau antibodies (e.g., AT8). Fold changes in detectable levels of total or phosphorylated hTau in cell lysates or following immunopurification from conditioned media were consistent with preferential release of phosphorylated hTau after light stimulation. This study establishes an excellent model to investigate the mechanism of activity-dependent hTau release and to better understand the role of phosphorylated tau release in the pathogenesis of AD since it relates to alterations in the early stage of neurodegeneration associated with increased neuronal activity.
Competing Interests: Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article.
(Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies