Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Subjective assessment of frequency distribution histograms and consequences on reference interval accuracy for small sample sizes: A computer-simulated study.

Tytuł:
Subjective assessment of frequency distribution histograms and consequences on reference interval accuracy for small sample sizes: A computer-simulated study.
Autorzy:
Coisnon C; Laboratoire Vebio, Arcueil, France.
Mitchell MA; Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, USA.
Rannou B; AzurVet-Lab, Saint-Laurent-du-Var, France.
Le Boedec K; Internal Medicine Unit, CHV Fregis, Arcueil, France.
Źródło:
Veterinary clinical pathology [Vet Clin Pathol] 2021 Sep; Vol. 50 (3), pp. 427-441. Date of Electronic Publication: 2021 Sep 02.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 1998- : Baton Rouge, LA : American Society for Veterinary Clinical Pathology
Original Publication: 1977-<1989> : Columbia, MO : Veterinary Practice Pub. Co.
MeSH Terms:
Computers*
Animals ; Computer Simulation ; Normal Distribution ; Reference Values ; Sample Size
References:
Friedrichs KR, Harr KE, Freeman KP, et al. ASVCP reference interval guidelines: determination of de novo reference intervals in veterinary species and other related topics. Vet Clin Pathol. 2012;41:441-453.
Le Boedec K. Sensitivity and specificity of normality tests and consequences on reference interval accuracy at small sample size: a computer-simulation study. Vet Clin Pathol. 2016;45:648-656.
Le Boedec K. Reference interval estimation of small sample sizes: a methodologic comparison using a computer-simulation study. Vet Clin Pathol. 2019;48:335-346.
Farver TB. Chapter 1 - concepts of normality in clinical biochemistry. In: Kaneko JJ, Harvey JW, Bruss ML, eds. Clinical Biochemistry of Domestic Animals, 6th ed. Academic Press; 2008:1-25.
O’Brien MA, McMichael MA, Le Boedec K, Lees G. Reference intervals and age-related changes for venous biochemical, hematological, electrolytic, and blood gas variables using a point of care analyzer in 68 puppies. J Vet Emerg Crit Care. 2014;24:291-301.
Horn PS, Pesce AJ, Copeland BE. A robust approach to reference interval estimation and evaluation. Clin Chem. 1998;44:622-631.
Dimauro C, Macciotta NPP, Rassu SPG, Patta C, Pulina G. A bootstrap approach to estimate reference intervals of biochemical variables in sheep using reduced sample sizes. Small Rumin Res. 2009;83:34-41.
Ibarra-Arenado M, Tjahjadi T, Pérez-Oria J, et al. Shadow-based vehicle detection in urban traffic. Sensors. 2017;17:1-19.
Przeszlowski KS. Community-oriented policing implementation, social disorganization and crime rates in small cities. Boca Raton, FL: Florida Atlantic University; 2016. Master of Science Thesis.
Wootton IDP, King EJ, Smith IM, Haslam RM. Normal biochemical values for whole blood and serum. Biochem J. 1951;48:59-60.
Wootton IDP, King EJ. Normal values for blood constituents; inter-hospital differences. Lancet. 1953;261:470-471.
Feldman M, Dickson B. Plasma electrolyte distributions in humans-normal or skewed? Am J Med Sci. 2017;354:453-457.
Pandis N. The sampling distribution. Am J Orthod Dentofac Orthop. 2015;147:517-519.
Osborne JW. Improving your data transformations: applying the Box-Cox transformation. Pract Assess Res Eval. 2010;15:1-9.
Ichihara K, Boyd JC. IFCC Committee on Reference Intervals and Decision Limits (C-RIDL). An appraisal of statistical procedures used in derivation of reference intervals. Clin Chem Lab Med. 2010;48:1537-1551.
Menke A, Rust KF, Savage PJ, Cowie CC. Hemoglobin A1c, fasting plasma glucose, and 2-hour plasma glucose distributions in U.S. population subgroups: NHANES 2005-2010. Ann Epidemiol. 2014;24(2):83-89.
Burke PV, Bullen BL, Poff KL. Frequency distribution histograms for the rapid analysis of data. Plant Physiol. 1988;87:797-798.
Haeckel R, Wosniok W. Observed, unknown distributions of clinical chemical quantities should be considered to be lognormal: a proposal. Clin Chem Lab Med. 2010;48:1393-1396.
Wilson BG, Adams BJ, Karney BW. Bias in log-transformed frequency distributions. J Hydrol. 1990;118:19-37.
Hoffmann G, Lichtinghagen R, Wosniok W. Simple estimation of reference intervals from routine laboratory data. LaboratoriumsMedizin. 2016;39:1-13.
Contributed Indexing:
Keywords: Gaussian distribution; bootstrap; left-skewed distribution; log-normal distribution; nonparametric method; parametric method; robust method
Entry Date(s):
Date Created: 20210903 Date Completed: 20210930 Latest Revision: 20210930
Update Code:
20240105
DOI:
10.1111/vcp.13000
PMID:
34476826
Czasopismo naukowe
Background: Inaccuracy in estimating reference intervals (RIs) is a problem with small sample sizes.
Objectives: This study aimed to identify the most accurate statistical methods to estimate RIs based on sample size and population distribution shape. We also studied the accuracy of sample frequency distribution histograms to retrieve the original population distribution and compared strategies based on the histogram and goodness-of-fit test.
Methods: The statistical methods that best enhanced accuracy were determined for various sample sizes (n = 20-60) and population distributions (Gaussian, log-normal, and left-skewed) were determined by repeated-measures ANOVA and posthoc analyses. Frequency distribution histograms were built from 900 samples of five different sizes randomly extracted from six simulated populations. Three reviewers classified the population distributions from visual assessments of a sample histogram, and the classification error rate was calculated. RI accuracy was compared among the strategies based on the histograms and goodness-of-fit tests.
Results: The parametric, nonparametric, and robust methods enhanced lower reference limit estimation accuracy for Gaussian, log-normal, and left-skewed distributions, respectively. The parametric, nonparametric bootstrap, and nonparametric methods enhanced the upper limit estimation accuracy for Gaussian, log-normal, and left-skewed distributions, respectively. Regardless of sample size, sample histogram assessments properly classified the original population distribution 71% to 93.9% of the time, depending on the reviewers. In this study, the strategy based on histograms assessed by the statistician was significantly more precise and accurate than the strategy based on the goodness-of-fit test (P < 0.001).
Conclusions: A strategy based on histograms might enhance the accuracy of RI estimations. However, relevant inter-reviewer variations in histogram interpretation were detected. Factors affecting inter-reviewer variations should be further explored.
(© 2021 American Society for Veterinary Clinical Pathology.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies