Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Spectroscopic glimpses of the transition state of ATP hydrolysis trapped in a bacterial DnaB helicase.

Tytuł:
Spectroscopic glimpses of the transition state of ATP hydrolysis trapped in a bacterial DnaB helicase.
Autorzy:
Malär AA; Physical Chemistry, ETH Zürich, Zürich, Switzerland.
Wili N; Physical Chemistry, ETH Zürich, Zürich, Switzerland.
Völker LA; Physical Chemistry, ETH Zürich, Zürich, Switzerland.
Kozlova MI; Department of Physics, Osnabrück University, Osnabrück, Germany.
Cadalbert R; Physical Chemistry, ETH Zürich, Zürich, Switzerland.
Däpp A; Physical Chemistry, ETH Zürich, Zürich, Switzerland.
Weber ME; Physical Chemistry, ETH Zürich, Zürich, Switzerland.
Zehnder J; Physical Chemistry, ETH Zürich, Zürich, Switzerland.
Jeschke G; Physical Chemistry, ETH Zürich, Zürich, Switzerland.
Eckert H; Institut für Physikalische Chemie, WWU Münster, Münster, Germany.; Instituto de Física de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP, Brazil.
Böckmann A; Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Lyon, France.
Klose D; Physical Chemistry, ETH Zürich, Zürich, Switzerland. .
Mulkidjanian AY; Department of Physics, Osnabrück University, Osnabrück, Germany. .; School of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia. .
Meier BH; Physical Chemistry, ETH Zürich, Zürich, Switzerland. .
Wiegand T; Physical Chemistry, ETH Zürich, Zürich, Switzerland. .; Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany. .; Institute of Technical and Macromolecular Chemistry, RWTH Aachen, Aachen, Germany. .
Źródło:
Nature communications [Nat Commun] 2021 Sep 06; Vol. 12 (1), pp. 5293. Date of Electronic Publication: 2021 Sep 06.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Adenosine Diphosphate/*chemistry
Adenosine Triphosphate/*chemistry
Bacterial Proteins/*chemistry
DNA, Bacterial/*chemistry
DnaB Helicases/*chemistry
Helicobacter pylori/*enzymology
Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/metabolism ; Aluminum Compounds/chemistry ; Aluminum Compounds/metabolism ; Arginine/chemistry ; Arginine/metabolism ; Bacterial Proteins/genetics ; Bacterial Proteins/metabolism ; Catalytic Domain ; Cloning, Molecular ; DNA, Bacterial/genetics ; DNA, Bacterial/metabolism ; DnaB Helicases/genetics ; DnaB Helicases/metabolism ; Escherichia coli/enzymology ; Escherichia coli/genetics ; Fluorides/chemistry ; Fluorides/metabolism ; Gene Expression ; Helicobacter pylori/genetics ; Hydrolysis ; Lysine/chemistry ; Lysine/metabolism ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Protein Interaction Domains and Motifs ; Recombinant Proteins/chemistry ; Recombinant Proteins/genetics ; Recombinant Proteins/metabolism ; Substrate Specificity ; Thermodynamics
References:
Biol Chem. 2017 May 1;398(5-6):523-533. (PMID: 28245182)
Nature. 2020 Nov;587(7832):157-161. (PMID: 33087927)
J Biomol NMR. 2001 Nov;21(3):249-61. (PMID: 11775741)
Nature. 2008 May 22;453(7194):489-4. (PMID: 18497818)
J Am Chem Soc. 2002 Aug 21;124(33):9704-5. (PMID: 12175218)
J Am Chem Soc. 2003 Dec 24;125(51):15750-1. (PMID: 14677958)
Angew Chem Int Ed Engl. 2013 Feb 18;52(8):2345-9. (PMID: 23335059)
Acc Chem Res. 2013 Sep 17;46(9):2059-69. (PMID: 23470055)
Proteins. 1997 Dec;29(4):401-16. (PMID: 9408938)
Proteins. 2005 Jun 1;59(4):687-96. (PMID: 15815974)
Chemistry. 2017 Jul 12;23(39):9425-9433. (PMID: 28426169)
Nat Struct Biol. 2002 Jun;9(6):416-8. (PMID: 12032555)
J Comput Chem. 2003 Jul 15;24(9):1142-56. (PMID: 12759913)
Proc Natl Acad Sci U S A. 2015 May 12;112(19):6009-14. (PMID: 25918412)
J Am Chem Soc. 2019 Jan 16;141(2):858-869. (PMID: 30620186)
Annu Rev Biochem. 1997;66:717-49. (PMID: 9242922)
J Phys Chem B. 2021 Jun 17;125(23):6222-6230. (PMID: 34097409)
J Am Chem Soc. 2015 Mar 4;137(8):3031-40. (PMID: 25646698)
Elife. 2018 Dec 11;7:. (PMID: 30526846)
J Mol Biol. 1999 Sep 17;292(2):321-32. (PMID: 10493878)
J Struct Biol. 2004 Apr-May;146(1-2):11-31. (PMID: 15037234)
J Biomol NMR. 2009 Nov;45(3):319-27. (PMID: 19779834)
Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):9187-92. (PMID: 27489348)
Annu Rev Biochem. 2011;80:943-71. (PMID: 21675921)
J Mol Biol. 2002 Mar 15;317(1):41-72. (PMID: 11916378)
EMBO J. 1982;1(8):945-51. (PMID: 6329717)
J Magn Reson. 2018 Sep;294:143-152. (PMID: 30053753)
J Am Chem Soc. 2011 Oct 5;133(39):15514-23. (PMID: 21819147)
Nucleic Acids Res. 2015 Sep 30;43(17):8564-76. (PMID: 26264665)
Chemistry. 2021 May 17;27(28):7745-7755. (PMID: 33822417)
Phys Rev Lett. 2003 Oct 3;91(14):146401. (PMID: 14611541)
Structure. 2017 Aug 1;25(8):1264-1274.e3. (PMID: 28712805)
Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10396-9. (PMID: 21670262)
Adv Protein Chem. 2000;54:245-75. (PMID: 10829230)
J Cell Sci. 2001 Feb;114(Pt 3):459-60. (PMID: 11171313)
Top Curr Chem (Cham). 2017 Apr;375(2):36. (PMID: 28299727)
Angew Chem Int Ed Engl. 2012 Jul 27;51(31):7855-8. (PMID: 22740125)
Angew Chem Int Ed Engl. 2017 Mar 13;56(12):3369-3373. (PMID: 28191714)
J Am Chem Soc. 2017 Sep 20;139(37):13006-13012. (PMID: 28724288)
J Biomol NMR. 1997 Jun;9(4):359-69. (PMID: 9255942)
Nat Commun. 2019 Jan 10;10(1):123. (PMID: 30631074)
Trends Biochem Sci. 1990 Nov;15(11):430-4. (PMID: 2126155)
Chem Commun (Camb). 2019 Jul 14;55(55):7899-7902. (PMID: 31199417)
Front Mol Biosci. 2020 Sep 30;7:582033. (PMID: 33195425)
Cell. 2012 Oct 12;151(2):267-77. (PMID: 23022319)
Nucleic Acids Res. 2003 Dec 1;31(23):6828-40. (PMID: 14627816)
Nat Commun. 2017 Dec 12;8(1):2073. (PMID: 29233991)
Solid State Nucl Magn Reson. 2017 Oct;87:117-125. (PMID: 28732673)
Solid State Nucl Magn Reson. 2017 Oct;87:126-136. (PMID: 28802890)
Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15152-6. (PMID: 21825153)
J Am Chem Soc. 2016 Dec 21;138(50):16345-16354. (PMID: 27936674)
Genome Res. 2000 Jan;10(1):5-16. (PMID: 10645945)
J Magn Reson. 2017 Jul;280:63-78. (PMID: 28579103)
Chembiochem. 2020 Feb 3;21(3):324-330. (PMID: 31310428)
J Am Chem Soc. 2014 Aug 6;136(31):11002-10. (PMID: 24988008)
Mol Cell. 2013 Dec 26;52(6):844-54. (PMID: 24373746)
Inorg Chem. 2015 Nov 2;54(21):10422-8. (PMID: 26488236)
J Biomol NMR. 2016 Mar;64(3):189-95. (PMID: 26961129)
Angew Chem Int Ed Engl. 2017 Aug 7;56(33):9732-9735. (PMID: 28498638)
Chem Commun (Camb). 2018 Aug 21;54(65):8972-8975. (PMID: 29974085)
J Magn Reson. 2002 Aug;157(2):178-80. (PMID: 12323135)
PLoS Biol. 2018 May 21;16(5):e2006192. (PMID: 29782488)
Prog Nucl Magn Reson Spectrosc. 2020 Apr;117:1-32. (PMID: 32471533)
Angew Chem Int Ed Engl. 2016 Nov 2;55(45):14164-14168. (PMID: 27709753)
J Biomol NMR. 2011 Dec;51(4):437-47. (PMID: 21953355)
Solid State Nucl Magn Reson. 2014 Feb-Apr;57-58:22-8. (PMID: 24300107)
J Phys Chem Lett. 2017 Jun 1;8(11):2399-2405. (PMID: 28492324)
Angew Chem Int Ed Engl. 2014 Nov 3;53(45):12253-6. (PMID: 25225004)
J Magn Reson. 2006 Jan;178(1):42-55. (PMID: 16188474)
Structure. 2008 May;16(5):715-26. (PMID: 18462676)
J Chem Phys. 2005 Jan 8;122(2):024515. (PMID: 15638606)
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11095-100. (PMID: 22723345)
Molecules. 2020 Nov 12;25(22):. (PMID: 33198135)
Front Mol Biosci. 2020 Feb 21;7:17. (PMID: 32154263)
Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305. (PMID: 16240044)
J Phys Chem B. 2020 Dec 10;124(49):11089-11097. (PMID: 33238710)
Angew Chem Int Ed Engl. 2012 Dec 3;51(49):12242-5. (PMID: 23125010)
J Struct Biol. 2006 Oct;156(1):2-11. (PMID: 16828312)
Dev Cell. 2015 May 26;33(4):401-12. (PMID: 25936506)
J Biomol NMR. 2020 May;74(4-5):247-256. (PMID: 32185644)
J Am Chem Soc. 2019 Jul 17;141(28):11183-11195. (PMID: 31199882)
Nat Commun. 2019 Jan 3;10(1):31. (PMID: 30604765)
Curr Opin Struct Biol. 2002 Dec;12(6):746-53. (PMID: 12504679)
Angew Chem Int Ed Engl. 2017 Apr 3;56(15):4110-4128. (PMID: 27862756)
J Biol Chem. 1993 Apr 5;268(10):7093-100. (PMID: 8463244)
J Phys Condens Matter. 2013 Nov 20;25(46):463101. (PMID: 24100357)
Sci Rep. 2019 Jul 31;9(1):11082. (PMID: 31366983)
J Am Chem Soc. 2010 Mar 24;132(11):3842-6. (PMID: 20184366)
Nat Commun. 2018 Apr 25;9(1):1658. (PMID: 29695721)
Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1236):367-78. (PMID: 1970643)
Substance Nomenclature:
0 (Aluminum Compounds)
0 (Bacterial Proteins)
0 (DNA, Bacterial)
0 (Recombinant Proteins)
61D2G4IYVH (Adenosine Diphosphate)
8L70Q75FXE (Adenosine Triphosphate)
94ZLA3W45F (Arginine)
EC 3.6.4.12 (DnaB Helicases)
K3Z4F929H6 (Lysine)
Q80VPU408O (Fluorides)
Z77H3IKW94 (aluminum fluoride)
Entry Date(s):
Date Created: 20210907 Date Completed: 20211005 Latest Revision: 20231107
Update Code:
20240105
PubMed Central ID:
PMC8421360
DOI:
10.1038/s41467-021-25599-z
PMID:
34489448
Czasopismo naukowe
The ATP hydrolysis transition state of motor proteins is a weakly populated protein state that can be stabilized and investigated by replacing ATP with chemical mimics. We present atomic-level structural and dynamic insights on a state created by ADP aluminum fluoride binding to the bacterial DnaB helicase from Helicobacter pylori. We determined the positioning of the metal ion cofactor within the active site using electron paramagnetic resonance, and identified the protein protons coordinating to the phosphate groups of ADP and DNA using proton-detected 31 P, 1 H solid-state nuclear magnetic resonance spectroscopy at fast magic-angle spinning > 100 kHz, as well as temperature-dependent proton chemical-shift values to prove their engagements in hydrogen bonds. 19 F and 27 Al MAS NMR spectra reveal a highly mobile, fast-rotating aluminum fluoride unit pointing to the capture of a late ATP hydrolysis transition state in which the phosphoryl unit is already detached from the arginine and lysine fingers.
(© 2021. The Author(s).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies