Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Mechanical and hydrodynamic analyses of helical strake-like ridges in a glass sponge.

Tytuł:
Mechanical and hydrodynamic analyses of helical strake-like ridges in a glass sponge.
Autorzy:
Fernandes MC; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.
Saadat M; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
Cauchy-Dubois P; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
Inamura C; Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Sirota T; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.
Milliron G; Collective Design, Grand Rapids, MI 49505, USA.
Haj-Hariri H; College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA.
Bertoldi K; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.
Weaver JC; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.
Źródło:
Journal of the Royal Society, Interface [J R Soc Interface] 2021 Sep; Vol. 18 (182), pp. 20210559. Date of Electronic Publication: 2021 Sep 08.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: London : Royal Society, [2004]-
MeSH Terms:
Glass*
Hydrodynamics*
References:
Nat Mater. 2021 Feb;20(2):237-241. (PMID: 32958878)
Nat Commun. 2020 Jan 17;11(1):373. (PMID: 31953388)
J Struct Biol. 2007 Apr;158(1):93-106. (PMID: 17175169)
J Vis Exp. 2017 Oct 11;(128):. (PMID: 29053688)
Proc Natl Acad Sci U S A. 1977 May;74(5):2069-71. (PMID: 266728)
Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):4976-81. (PMID: 25848003)
Science. 2005 Jul 8;309(5732):275-8. (PMID: 16002612)
PLoS One. 2011;6(12):e27787. (PMID: 22180779)
Contributed Indexing:
Keywords: Euplectella aspergillum; bioinspired; ribs; ridges; strakes; vortex shedding
Entry Date(s):
Date Created: 20210908 Date Completed: 20211029 Latest Revision: 20220910
Update Code:
20240105
PubMed Central ID:
PMC8424341
DOI:
10.1098/rsif.2021.0559
PMID:
34493089
Czasopismo naukowe
From the discovery of functionally graded laminated composites, to near-structurally optimized diagonally reinforced square lattice structures, the skeletal system of the predominantly deep-sea sponge Euplectella aspergillum has continued to inspire biologists, materials scientists and mechanical engineers. Building on these previous efforts, in the present study, we develop an integrated finite element and fluid dynamics approach for investigating structure-function relationships in the complex maze-like organization of helical ridges that surround the main skeletal tube of this species. From these investigations, we discover that not only do these ridges provide additional mechanical reinforcement, but perhaps more significantly, provide a critical hydrodynamic benefit by effectively suppressing von Kármán vortex shedding and reducing lift forcing fluctuations over a wide range of biologically relevant flow regimes. By comparing the disordered sponge ridge geometry to other more symmetrical strake-based vortex suppression systems commonly employed in infrastructure applications ranging from antennas to underwater gas and oil pipelines, we find that the unique maze-like ridge organization of E. aspergillum can completely suppress vortex shedding rather than delaying their shedding to a more downstream location, thus highlighting their potential benefit in these engineering contexts.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies