Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Multi-tissue transcriptome analysis of two Begonia species reveals dynamic patterns of evolution in the chalcone synthase gene family.

Tytuł:
Multi-tissue transcriptome analysis of two Begonia species reveals dynamic patterns of evolution in the chalcone synthase gene family.
Autorzy:
Emelianova K; Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, UK. .; Dementia Research Institute at the University of Edinburgh, Edinburgh, UK. .
Martínez Martínez A; Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, UK.; School of Biological Sciences, University of Edinburgh, King's Buildings, Mayfield Rd, Edinburgh, EH9 3JU, UK.
Campos-Dominguez L; Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, UK.; School of Biological Sciences, University of Edinburgh, King's Buildings, Mayfield Rd, Edinburgh, EH9 3JU, UK.
Kidner C; Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, UK.; School of Biological Sciences, University of Edinburgh, King's Buildings, Mayfield Rd, Edinburgh, EH9 3JU, UK.
Źródło:
Scientific reports [Sci Rep] 2021 Sep 07; Vol. 11 (1), pp. 17773. Date of Electronic Publication: 2021 Sep 07.
Typ publikacji:
Comparative Study; Journal Article
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Biological Evolution*
Gene Duplication*
Transcriptome*
Acyltransferases/*genetics
Begoniaceae/*genetics
Plant Proteins/*genetics
Amino Acid Sequence ; Base Sequence ; Begoniaceae/classification ; Begoniaceae/metabolism ; Evolution, Molecular ; Gene Ontology ; Genetic Variation ; Genome, Plant ; Molecular Sequence Annotation ; Multigene Family ; Organ Specificity ; Phylogeny ; Plant Structures/metabolism ; RNA, Plant/biosynthesis ; RNA, Plant/genetics ; Sequence Alignment ; Sequence Homology, Amino Acid ; Species Specificity
References:
Hughes, N. M. et al. Begonia Resource Centre, Online database available from http://padme.rbge.org.uk/begonia/ . (2015).
Goodall-Copestake, W. P., Harris, D. J. & Hollingsworth, P. M. The origin of a mega-diverse genus: dating Begonia (Begoniaceae) using alternative datasets, calibrations and relaxed clock methods. Bot. J. Linn. Soc. 159, 363–380 (2009). (PMID: 10.1111/j.1095-8339.2009.00948.x)
Dewitte, A., Twyford, A. D., Thomas, D. C., Kidner, C. A. & Huylenbroeck, J. V. The origin of diversity in begonia: genome dynamism, population processes and phylogenetic patterns. Dyn. Process. Biodivers. Case Stud. Evol. Spat. Distrib. (2011). https://doi.org/10.5772/23789 .
Hughes, M. & Hollingsworth, P. M. Population genetic divergence corresponds with species-level biodiversity patterns in the large genus Begonia. Mol. Ecol. 17, 2643–2651 (2008). (PMID: 1846622810.1111/j.1365-294X.2008.03788.x)
Kiew, R. The Limestone Begonias of Sabah, Borneo—Flagship species for conservation. Gard. Bull. Singap. 53, 241–286 (2001).
McLellan, T. Geographic variation and plasticity of leaf shape and size in Begonia dregei and B. homonyma (Begoniaceae). Bot. J. Linn. Soc. 132, 79–95 (2000). (PMID: 10.1111/j.1095-8339.2000.tb01855.x)
Dewitte, A. D. et al. Genome size variation in Begonia. Genome https://doi.org/10.1139/G09-056 (2009). (PMID: 10.1139/G09-05619935907)
Brennan, A. C. et al. Genomic resources for evolutionary studies in the large, diverse, tropical genus, Begonia. Trop. Plant Biol. 5, 261–276 (2012). (PMID: 10.1007/s12042-012-9109-6)
Zhang, L. et al. The ancient wave of polyploidization events in flowering plants and their facilitated adaptation to environmental stress. Plant Cell Environ. 43, 2847–2856 (2020). (PMID: 3300147810.1111/pce.13898)
Burt-Utley, K. A revision of Central American species of Begonia section Gireoudia (Begoniaceae). Tulane Stud. Zool. Bot. 25, 1–131 (1985).
Ferrer, J.-L., Jez, J. M., Bowman, M. E., Dixon, R. A. & Noel, J. P. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat. Struct. Biol. 6, 775–784 (1999). (PMID: 1042695710.1038/11553)
Fofana, B. et al. Milsana-induced resistance in powdery mildew-infected cucumber plants correlates with the induction of chalcone synthase and chalcone isomerase. Physiol. Mol. Plant Pathol. 61, 121–132 (2002). (PMID: 10.1006/pmpp.2002.0420)
Banik, N. & Bhattacharjee, S. Complementation of ROS scavenging secondary metabolites with enzymatic antioxidant defense system augments redox-regulation property under salinity stress in rice. Physiol. Mol Biol. Plants Int. J. Funct. Plant Biol. 26, 1623–1633 (2020). (PMID: 10.1007/s12298-020-00844-9)
Karageorgou, P., Buschmann, C. & Manetas, Y. Red leaf color as a warning signal against insect herbivory: Honest or mimetic?. Flora Morphol Distrib. Funct. Ecol. Plants 203, 648–652 (2008). (PMID: 10.1016/j.flora.2007.10.006)
Krause, G. H. et al. Photosynthesis, photoprotection, and growth of shade-tolerant tropical tree seedlings under full sunlight. Photosynth. Res. 113, 273–285 (2012). (PMID: 2246652910.1007/s11120-012-9731-z)
Zhang, Q., Liu, M. & Ruan, J. Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves. BMC Plant Biol. 17, 64 (2017). (PMID: 28320327535998510.1186/s12870-017-1012-8)
Chazdon, R. L. & Pearcy, R. W. The importance of sunflecks for forest understory plants. Bioscience 41, 760–766 (1991). (PMID: 10.2307/1311725)
Hughes, N. M. et al. Photosynthetic costs and benefits of abaxial versus adaxial anthocyanins in Colocasia esculenta ‘Mojito’. Planta 240, 971–981 (2014). (PMID: 2490336010.1007/s00425-014-2090-6)
Zhang, T.-J. et al. A magic red coat on the surface of young leaves: Anthocyanins distributed in trichome layer protect Castanopsis fissa leaves from photoinhibition. Tree Physiol. 36, 1296–1306 (2016). (PMID: 2761435710.1093/treephys/tpw080)
Durbin, M. L., Learn, G. H., Huttley, G. A. & Clegg, M. T. Evolution of the chalcone synthase gene family in the genus Ipomoea. Proc. Natl. Acad. Sci. 92, 3338–3342 (1995). (PMID: 77245634216110.1073/pnas.92.8.3338)
Durbin, M. L., McCaig, B. & Clegg, M. T. Molecular evolution of the chalcone synthase multigene family in the morning glory genome. Plant Mol. Biol. 42, 79–92 (2000). (PMID: 1068813110.1023/A:1006375904820)
Logemann, J., Schell, J. & Willmitzer, L. Improved method for the isolation of RNA from plant tissues. Anal. Biochem. 163, 16–20 (1987). (PMID: 244162310.1016/0003-2697(87)90086-8)
Laetsch, D. R. & Blaxter, M. L. BlobTools: Interrogation of genome assemblies. F1000Research 6, 1287 (2017). (PMID: 10.12688/f1000research.12232.1)
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). (PMID: 24695404410359010.1093/bioinformatics/btu170)
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011). (PMID: 21572440357171210.1038/nbt.1883)
Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 10.1093/bioinformatics/bts63523104886)
Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M. & Kelly, S. TransRate: Reference-free quality assessment of de novo transcriptome assemblies. Genome Res. 26, 1134–1144 (2016). (PMID: 27252236497176610.1101/gr.196469.115)
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015). (PMID: 10.1093/bioinformatics/btv35126059717)
Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18, 762–776 (2017). (PMID: 28099853541905010.1016/j.celrep.2016.12.063)
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). (PMID: 2422767710.1093/bioinformatics/btt656)
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). (PMID: 1991030810.1093/bioinformatics/btp616)
Pearson, W. R. An introduction to sequence similarity (“homology”) searching. Curr. Protoc. Bioinforma. 42, 311–318 (2013). (PMID: 10.1002/0471250953.bi0301s42)
Martínez, A. M. A Draft Genome Assembly for Hillebrandia Sandwicensis. (2017).
Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012). (PMID: 22543367337183210.1093/bioinformatics/bts199)
Li, Z.-Z., Sun, S.-S., Wang, Q.-F. & Chen, J.-M. RNA-Seq analysis of the distylous plant nymphoides peltata identified ortholog genes between long- and short-styled flowers. Front. Ecol. Evol. 5, 66 (2017). (PMID: 10.3389/fevo.2017.00059)
Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. J. & Mclnerney, J. O. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol. 6, 29 (2006). (PMID: 16563161143593310.1186/1471-2148-6-29)
Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014). (PMID: 24451623399814410.1093/bioinformatics/btu033)
Han, Y.-Y. et al. Molecular evolution and functional specialization of chalcone synthase superfamily from Phalaenopsis Orchid. Genetica 128, 429–438 (2006). (PMID: 1702897010.1007/s10709-006-7668-x)
Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007). (PMID: 1748311310.1093/molbev/msm088)
Huang, S. et al. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41, 1275–1281 (2009). (PMID: 1988152710.1038/ng.475)
Paterson, A. H. et al. Comparative genome analysis of monocots and dicots, toward characterization of angiosperm diversity. Curr. Opin. Biotechnol. 15, 120–125 (2004). (PMID: 1508104910.1016/j.copbio.2004.03.001)
Chen, F. et al. Genome sequences of horticultural plants: Past, present, and future. Hortic. Res. 6, 1–23 (2019). (PMID: 10.1038/s41438-019-0195-6)
Onstein, R. E. Darwin’s second ‘abominable mystery’: Trait flexibility as the innovation leading to angiosperm diversity. New Phytol. 228, 1741–1747 (2020). (PMID: 3166471310.1111/nph.16294)
Igloi, G. L. Evidence for fungal sequence contamination in plant transcriptome databases. Plant Syst. Evol. 305, 563–568 (2019). (PMID: 10.1007/s00606-019-01586-2)
Zhu, J., Wang, G. & Pelosi, P. Plant transcriptomes reveal hidden guests. Biochem. Biophys. Res. Commun. 474, 497–502 (2016). (PMID: 2713082510.1016/j.bbrc.2016.04.134)
Simion, P. et al. A software tool ‘CroCo’ detects pervasive cross-species contamination in next generation sequencing data. BMC Biol. 16, 28 (2018). (PMID: 29506533583895210.1186/s12915-018-0486-7)
Chang, Z., Wang, Z. & Li, G. The impacts of read length and transcriptome complexity for de novo assembly: A simulation study. PLoS ONE 9, e94825 (2014). (PMID: 24736633398810110.1371/journal.pone.0094825)
Sundell, D. et al. AspWood: High-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in populus tremula. Plant Cell 29, 1585–1604 (2017). (PMID: 28655750555975210.1105/tpc.17.00153)
Takahagi, K., Inoue, K. & Mochida, K. Gene co-expression network analysis suggests the existence of transcriptional modules containing a high proportion of transcriptionally differentiated homoeologs in hexaploid wheat. Front. Plant Sci. 9, 66 (2018). (PMID: 10.3389/fpls.2018.01163)
Shi, T. et al. Distinct expression and methylation patterns for genes with different fates following a single whole-genome duplication in flowering plants. Mol. Biol. Evol. 37, 2394–2413 (2020). (PMID: 32343808740362510.1093/molbev/msaa105)
Ali, M. S. Genetic Architecture of Species Level Differences in Begonia Section Gireoudia. (2013).
Landi, M. et al. Unveiling the shade nature of cyanic leaves: A view from the “blue absorbing side” of anthocyanins. Plant Cell Environ. 44, 1119–1129 (2021). (PMID: 3251501010.1111/pce.13818)
Franklin, K. A. Shade avoidance. New Phytol. 179, 930–944 (2008). (PMID: 1853789210.1111/j.1469-8137.2008.02507.x)
Hu, B. et al. Overexpression of Chalcone Synthase Gene Improves Flavonoid Accumulation and Drought Tolerance in Tobacco. https://www.researchsquare.com/article/rs-8921/v2 (2020) https://doi.org/10.21203/rs.2.18297/v2 .
Richard, S., Lapointe, G., Rutledge, R. G. & Séguin, A. Induction of chalcone synthase expression in white spruce by wounding and jasmonate. Plant Cell Physiol. 41, 982–987 (2000). (PMID: 1103805910.1093/pcp/pcd017)
Schenk, P. M. et al. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. 97, 11655–11660 (2000). (PMID: 110273631725610.1073/pnas.97.21.11655)
Habereder, H., Schröder, G. & Ebel, J. Rapid induction of phenylalanine ammonia-lyase and chalcone synthase mRNAs during fungus infection of soybean (Glycine max L.) roots or elicitor treatment of soybean cell cultures at the onset of phytoalexin synthesis. Planta 177, 58–65 (1989). (PMID: 2421227210.1007/BF00392154)
Cui, Y., Magill, J., Frederiksen, R. & Magill, C. Chalcone synthase and phenylalanine ammonia-lyase mRNA levels following exposure of sorghum seedlings to three fungal pathogens. Physiol. Mol. Plant Pathol. 49, 187–199 (1996). (PMID: 10.1006/pmpp.1996.0048)
Lipinska, A. P. et al. Rapid turnover of life-cycle-related genes in the brown algae. Genome Biol. 20, 35 (2019). (PMID: 30764885637491310.1186/s13059-019-1630-6)
Feng, C. et al. The genome of a cave plant, Primulina huaijiensis, provides insights into adaptation to limestone karst habitats. New Phytol. 227, 1249–1263 (2020). (PMID: 3227480410.1111/nph.16588)
Rizzon, C., Ponger, L. & Gaut, B. S. Striking similarities in the genomic distribution of tandemly arrayed genes in arabidopsis and rice. PLOS Comput. Biol. 2, e115 (2006). (PMID: 16948529155758610.1371/journal.pcbi.0020115)
Menardo, F., Praz, C. R., Wicker, T. & Keller, B. Rapid turnover of effectors in grass powdery mildew (Blumeria graminis). BMC Evol. Biol. 17, 223 (2017). (PMID: 29089018566445210.1186/s12862-017-1064-2)
Zhong, Y., Zhang, X., Shi, Q. & Cheng, Z.-M. Adaptive evolution driving the young duplications in six Rosaceae species. BMC Genomics 22, 112 (2021). (PMID: 33563208787159910.1186/s12864-021-07422-7)
Substance Nomenclature:
0 (Plant Proteins)
0 (RNA, Plant)
EC 2.3.- (Acyltransferases)
EC 2.3.1.74 (flavanone synthetase)
Entry Date(s):
Date Created: 20210908 Date Completed: 20211116 Latest Revision: 20230205
Update Code:
20240105
PubMed Central ID:
PMC8423730
DOI:
10.1038/s41598-021-96854-y
PMID:
34493743
Czasopismo naukowe
Begonia is an important horticultural plant group, as well as one of the most speciose Angiosperm genera, with over 2000 described species. Genus wide studies of genome size have shown that Begonia has a highly variable genome size, and analysis of paralog pairs has previously suggested that Begonia underwent a whole genome duplication. We address the contribution of gene duplication to the generation of diversity in Begonia using a multi-tissue RNA-seq approach. We chose to focus on chalcone synthase (CHS), a gene family having been shown to be involved in biotic and abiotic stress responses in other plant species, in particular its importance in maximising the use of variable light levels in tropical plants. We used RNA-seq to sample six tissues across two closely related but ecologically and morphologically divergent species, Begonia conchifolia and B. plebeja, yielding 17,012 and 19,969 annotated unigenes respectively. We identified the chalcone synthase gene family members in our Begonia study species, as well as in Hillebrandia sandwicensis, the monotypic sister genus to Begonia, Cucumis sativus, Arabidopsis thaliana, and Zea mays. Phylogenetic analysis suggested the CHS gene family has high duplicate turnover, all members of CHS identified in Begonia arising recently, after the divergence of Begonia and Cucumis. Expression profiles were similar within orthologous pairs, but we saw high inter-ortholog expression variation. Sequence analysis showed relaxed selective constraints on some ortholog pairs, with substitutions at conserved sites. Evidence of pseudogenisation and species specific duplication indicate that lineage specific differences are already beginning to accumulate since the divergence of our study species. We conclude that there is evidence for a role of gene duplication in generating diversity through sequence and expression divergence in Begonia.
(© 2021. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies