Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Functional analysis of indole 3-hexanoic acid as a novel auxin from Arabidopsis thaliana.

Tytuł:
Functional analysis of indole 3-hexanoic acid as a novel auxin from Arabidopsis thaliana.
Autorzy:
Song P; College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
Xu H; College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
Zhang J; College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
Chen H; Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
Li L; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, People's Republic of China.
Qu Y; College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
Lin F; College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .
Zhang Q; College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .
Źródło:
Planta [Planta] 2021 Sep 08; Vol. 254 (4), pp. 69. Date of Electronic Publication: 2021 Sep 08.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin, New York, Springer-Verlag [etc.]
MeSH Terms:
Arabidopsis*/genetics
Arabidopsis*/metabolism
Arabidopsis Proteins*/genetics
Arabidopsis Proteins*/metabolism
Caproates ; Gene Expression Regulation, Plant ; Indoleacetic Acids ; Indoles ; Plant Roots/metabolism
References:
Armengot LMBM, Jaillais Y (2016) Regulation of polar auxin transport by protein and lipid kinases. J Exp Bot 59:4015–4037. (PMID: 10.1093/jxb/erw216)
Benková EMM, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602. (PMID: 1465185010.1016/S0092-8674(03)00924-3)
Blakeslee JJ, Peer WA, Murphy AS (2005) Auxin transport. Curr Opin Plant Biol 8:494–500. (PMID: 1605442810.1016/j.pbi.2005.07.014)
Chapman EJ, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43:265–285. (PMID: 1968608110.1146/annurev-genet-102108-134148)
Christian M, Hannah WB, Lüthen H, Jones AM (2008) Identification of auxins by a chemical genomics approach. J Exp Bot 59:2757–2767. (PMID: 18515827248646910.1093/jxb/ern133)
Damodaran S, Strader LC (2019) Indole 3-butyric acid metabolism and transport in Arabidopsis thaliana. Front Plant Sci 10:851. (PMID: 31333697661611110.3389/fpls.2019.00851)
De Rybel B, Audenaert D, Xuan W, Overvoorde P, Strader LC, Kepinski S, Hoye R, Brisbois R, Parizot B, Vanneste S, Liu X, Gilday A, Graham IA, Nguyen L, Jansen L, Njo MF, Inzé D, Bartel B, Beeckman T (2012) A role for the root cap in root branching revealed by the non-auxin probe naxillin. Nat Chem Biol 8:798–805. (PMID: 22885787373536710.1038/nchembio.1044)
Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445. (PMID: 1591779710.1038/nature03543)
Feng Y, Xu P, Li B, Li P, Wen X, An F, Gong Y, Xin Y, Zhu Z, Wang Y (2017) Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis. Proc Natl Acad Sci USA 114:13834–13839. (PMID: 29233944574818210.1073/pnas.1711723115)
Frick EM, Strader LC (2018) Roles for IBA-derived auxin in plant development. J Exp Bot 69:169–177. (PMID: 2899209110.1093/jxb/erx29828992091)
Geisler M, Aryal B, Di DM, Hao P (2017) A critical view on ABC transporters and their interacting partners in auxin transport. Plant Cell Physiol 58:1601–1614. (PMID: 2901691810.1093/pcp/pcx10429016918)
Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCF-dependent degradation of AUX/IAA proteins. Nature 414:271–276. (PMID: 1171352010.1038/3510450011713520)
Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–2303. (PMID: 22669882340691710.1105/tpc.112.096586)
Kepinski S, Leyser O (2005a) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451. (PMID: 1591779810.1038/nature0354215917798)
Kepinski S, Leyser O (2005b) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445. (PMID: 10.1038/nature03542)
Keuskamp DH, Sasidharan R, Vos I, Peeters AJM, Voesenek LACJ, Pierik R (2011) Blue–light–mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Plant J 67:208–217. (PMID: 2145737410.1111/j.1365-313X.2011.04597.x21457374)
Laskowski M, Tusscher TKH (2017) Periodic lateral root priming: what makes it tick? Plant Cell 29:432–444. (PMID: 28223442538595010.1105/tpc.16.00638)
Lin Q, Ohashi Y, Kato M, Tsuge T, Gu H, Qu LJ, Aoyama T (2015) GLABRA2 directly suppresses basic helix-loop-helix transcription factor genes with diverse functions in root hair development. Plant Cell 27:2894–2906. (PMID: 26486447463799210.1105/tpc.15.00207)
Liu CY, Wang P, Zhang DJ, Zou YN, Kuča K, Wu QS (2018) Mycorrhiza-induced change in root hair growth is associated with IAA accumulation and expression of EXPs in trifoliate orange under two P levels. Sci Horti 234:227–235. (PMID: 10.1016/j.scienta.2018.02.052)
Ludwig-Müller J (2000) Indole-3-butyric acid in plant growth and development. Plant Growth Regul 32:219–230. (PMID: 10.1023/A:1010746806891)
Ludwig-Muller J, Epstein E (1993) Indole-3-butyric acid in Arabidopsis thaliana. Plant Growth Regul 13:189–195. (PMID: 10.1007/BF00024261)
Marzol E, Borassi C, Denita JSP, Mangano S, Estevez JM (2017) RSL4 takes control: multiple signals, one transcription factor. Trends Plant Sci 22:553–555. (PMID: 2848704610.1016/j.tplants.2017.04.007)
Michel RR, Barbez E, Jürgen KV (2012) Cellular auxin homeostasis: gatekeeping is housekeeping. Mol Plant 5:772–786. (PMID: 10.1093/mp/ssr109)
Michniewicz M, Powers SK, Strader LC (2014) IBA transport by PDR proteins. In: Geisler M (ed) Plant ABC transporters. Springer Int. Publishing, Cham, pp 313–331. (PMID: 10.1007/978-3-319-06511-3_17)
Morffy N, Strader LC (2020) Old town roads: routes of auxin biosynthesis across kingdoms. Curr Opin Plant Biol 55:21–27. (PMID: 32199307754072810.1016/j.pbi.2020.02.002)
Naramoto S (2017) Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport. Curr Opin Plant Biol 40:8–14. (PMID: 2868691010.1016/j.pbi.2017.06.012)
Östin AKM, Bhalerao RP, Sandberg G (1998) Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol 118:285–296. (PMID: 97335483486710.1104/pp.118.1.285)
Peret B, Swarup K, Ferguson A, Seth M, Yang Y, Dhondt S, James N, Casimiro I, Perry P, Syed A, Yang H, Reemmer J, Venison E, Howells C, Perez-Amador MA, Yun J, Alonso J, Beemster GT, Laplaze L, Murphy A, Bennett MJ, Nielsen E, Swarup R (2012) AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development. Plant Cell 24:2874–2885. (PMID: 22773749342612010.1105/tpc.112.097766)
Pérez-Pérez JM, Ponce MR, Micol JL (2004) The ULTRACURVATA2 gene of Arabidopsis encodes an FK506-binding protein involved in auxin and brassinosteroid signaling. Plant Physiol 134:101–117. (PMID: 1473006631629110.1104/pp.103.032524)
Qu Y, Wang Q, Guo J, Wang P, Song P, Jia Q, Zhang X, Kudla J, Zhang W, Zhang Q (2017) Peroxisomal CuAOζ and its product H 2 O 2 regulate the distribution of auxin and IBA-dependent lateral root development in Arabidopsis. J Exp Bot 68:4851–4867. (PMID: 2899212810.1093/jxb/erx29028992128)
Pitts JR, Cernac AE, Mark, (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J 16:553–560. (PMID: 1003677310.1046/j.1365-313x.1998.00321.x10036773)
Robert HS, Grones P, Stepanova AN, Robles LM, Lokerse AS, Alonso JM, Weijers D, Friml J (2013) Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr Biol 23:2506–2512. (PMID: 2429108910.1016/j.cub.2013.09.03924291089)
Ruzicka K, Strader LC, Bailly A, Yang H, Blakeslee J, Langowski L, Nejedla E, Fujita H, Itoh H, Syono K (2010) Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proc Natl Acad Sci USA USA 107:10749–10753. (PMID: 10.1073/pnas.1005878107)
Sauer M, Kleine-Vehn J (2019) PIN-FORMED and PIN-LIKES auxin transport facilitators. Development 146:dev168088.
Simon S, Petráek J (2011) Why plants need more than one type of auxin. Plant Sci 180:454–460. (PMID: 2142139210.1016/j.plantsci.2010.12.00721421392)
Strader LC, Bartel B (2009) The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. Plant Cell 21:1992–2007. (PMID: 19648296272961610.1105/tpc.109.065821)
Strader LC, Bartel B (2011) Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. Mol Plant 4:477–486. (PMID: 21357648309871610.1093/mp/ssr006)
Swarup R, Péret B (2012) AUX/LAX family of auxin influx carriers—an overview. Front Plant Sci 3:225. (PMID: 23087694347514910.3389/fpls.2012.00225)
Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645. (PMID: 1741016910.1038/nature0573117410169)
Uzunova VV, Quareshy M, Del Genio CI, Napier RM (2016) Tomographic docking suggests the mechanism of auxin receptor TIR1 selectivity. Open Biol 6:160139. (PMID: 27805904509005810.1098/rsob.160139)
Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016. (PMID: 1930384510.1016/j.cell.2009.03.001)
Vieten A, Vanneste S, Wisniewska J, BenkováE BR, Beeckman T, Luschnig C, Friml J (2005) Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132:4521–4531. (PMID: 1619230910.1242/dev.02027)
Vosolsobě S, Roman S, Petráek J (2020) The evolutionary origins of auxin transport: what we know and what we need to know. J Exp Bot 71:3287–3295. (PMID: 3224615510.1093/jxb/eraa169)
Wójcikowska B, Jaskóła K, Gasiorek P, Meus M (2013) LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta 238:425–440. (PMID: 23722561375128710.1007/s00425-013-1892-2)
Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735. (PMID: 157497531574975310.1093/aob/mci083)
Yi K, Menand BT, Bell E, Dolan L (2010) A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nat Genet 2:264–267. (PMID: 10.1038/ng.529)
Zazimalova E, Petrasek J, Benkova E (2014) (eds) Auxin and its role in plant development. Springer Int. Publishing, pp 61–64.
Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5:334–338. (PMID: 2215595010.1093/mp/ssr104)
Zolman BKNM, Bartel B (2007) A novel peroxisomal acyl-CoA dehydrogenase-like protein required for indole-3-butyric acid response. Plant Mol Biol 64:59–72. (PMID: 1727789610.1007/s11103-007-9134-2)
Zolman BK, Martinez N, Millius A, Adham AR, Bartel B (2008) Identification and characterization of Arabidopsis indole-3-butyric acid response mutants defective in novel peroxisomal enzymes. Genetics 180:237–251. (PMID: 18725356253567810.1534/genetics.108.090399)
Grant Information:
31970300 National Natural Science Foundation of China; BK20190025 Excellent Youth Foundation of Jiangsu Scientific Committee; CX-20-2007 Jiangsu Agricultural Science and Technology Independent Innovation Fund; BE2019376 Key Technology Research and Development Program of Shandong; BK20200555 Natural Science Foundation of Jilin Province
Contributed Indexing:
Keywords: ABC transporter; Auxin; IAA; IBA; Peroxisome; β-Oxidation
Substance Nomenclature:
0 (Arabidopsis Proteins)
0 (Caproates)
0 (Indoleacetic Acids)
0 (Indoles)
1F8SN134MX (hexanoic acid)
Entry Date(s):
Date Created: 20210909 Date Completed: 20210910 Latest Revision: 20220426
Update Code:
20240105
DOI:
10.1007/s00425-021-03719-9
PMID:
34498125
Czasopismo naukowe
Main Conclusion: Indole 3-hexanoic acid is a novel auxin and regulates plant growth and development. Auxin is a signaling molecule that influences most aspects of plant development. Although many small bioactive molecules have been developed as auxin analogues, naturally occurring auxin and the detailed mechanisms of its specific actions in plants remain to be fully elucidated. In this study, to screen auxin responses, we used a novel picolinate synthetic auxin, 3-indole hexanoic acid (IHA), which is similar in structure to indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). IHA showed classical auxin activity in the regulation of root growth, gene expression, and PIN-FORMED abundance. Physiological and genetic analyses indicated that IHA may be perceived by the auxin receptor TIR1 and transported by the G-class ATP-binding cassette protein ABCG36 and its homolog ABCG37. Importantly, IHA was detected in planta and converted into IBA depending on the peroxisomal β-oxidation. Together, these findings reveal a novel auxin pathway component and suggest possible undiscovered modes of auxin metabolism regulation in plants.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies