Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Molecular mechanisms and hormonal regulation underpinning morphological dormancy: a case study using Apium graveolens (Apiaceae).

Tytuł:
Molecular mechanisms and hormonal regulation underpinning morphological dormancy: a case study using Apium graveolens (Apiaceae).
Autorzy:
Walker M; Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.; Tozer Seeds, Tozer Seeds Ltd, Cobham, KT11 3EH, UK.
Pérez M; Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
Steinbrecher T; Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
Gawthrop F; Tozer Seeds, Tozer Seeds Ltd, Cobham, KT11 3EH, UK.
Pavlović I; Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic.
Novák O; Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic.
Tarkowská D; Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic.
Strnad M; Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic.
Marone F; Swiss Light Source, Paul Scherrer Institute, Villigen, CH-5232, Switzerland.
Nakabayashi K; Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
Leubner-Metzger G; Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.; Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic.
Źródło:
The Plant journal : for cell and molecular biology [Plant J] 2021 Nov; Vol. 108 (4), pp. 1020-1036. Date of Electronic Publication: 2021 Sep 24.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Oxford : Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology, c1991-
MeSH Terms:
Apium/*physiology
Gibberellins/*metabolism
Indoleacetic Acids/*metabolism
Plant Growth Regulators/*metabolism
Seeds/*physiology
Apium/genetics ; Apium/growth & development ; Biological Transport ; Endosperm/growth & development ; Endosperm/physiology ; Gene Expression Regulation, Plant ; Germination ; Models, Biological ; Plant Dormancy ; Seeds/genetics ; Seeds/growth & development
References:
Aihua, L., Shunyuan, J., Guang, Y., Ying, L., Na, G., Tong, C. et al. (2018) Molecular mechanism of seed dormancy release induced by fluridone compared with cold stratification in Notopterygium incisum. BMC Plant Biology, 18, 116.
Ali-Rachedi, S., Bouinot, D., Wagner, M.H., Bonnet, M., Sotta, B., Grappin, P. et al. (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta, 219, 479-488.
Arshad, W., Marone, F., Collinson, M.E., Leubner-Metzger, G. & Steinbrecher, T. (2020) Fracture of the dimorphic fruits of Aethionema arabicum (Brassicaceae). Botany-Botanique, 98, 65-75.
Atia, A., Debez, A., Barhoumi, Z., Abdelly, C. & Smaoui, A. (2012) Investigation of embryo growth and reserve mobilization of water or salt imbibed seeds of Crithmum maritimum L. Acta Botanica Gallica, 159, 17-24.
Baskin, C.C. & Baskin, J.M. (2014) Seeds-Ecology, biogeography, and evolution of dormancy and germination San Diego. London: Academic Press.
Baskin, J.M. & Baskin, C.M. (1979) Studies on the autecology and population biology of the weedy monocarpic perennial, Pastinaca sativa. Journal of Ecology, 67, 601-610.
Baskin, J.M. & Baskin, C.C. (1990) Seed germination ecology of poison hemlock, Conium maculatum. Canadian Journal of Botany, 68, 2018-2024.
Baskin, J.M., Hidayati, S.N., Baskin, C.C., Walck, J.L., Huang, Z.Y. & Chien, C.T. (2006) Evolutionary considerations of the presence of both morphophysiological and physiological seed dormancy in the highly advanced euasterids II order Dipsacales. Seed Science Research, 16, 233-242.
Bewley, J.D. (1997) Breaking down the walls-a role for endo-ß-mannanase in release from seed dormancy ? Trends in Plant Science, 2, 464-469.
Bradford, K.J. (2005) Threshold models applied to seed germination ecology. New Phytologist, 165, 338-341.
Bradford, K.J., Benech-Arnold, R.L., Come, D. & Corbineau, F. (2008) Quantifying the sensitivity of barley seed germination to oxygen, abscisic acid, and gibberellin using a population-based threshold model. Journal of Experimental Botany, 59, 335-347.
Bradford, K.J. & Trewavas, J. (1994) Sensitivity thresholds and variable time scales in plant hormone action. Plant Physiology, 105, 1029-1036.
Burmeier, S. & Jensen, K. (2008) Is the endangered Apium repens (Jacq.) Lag. rare because of a narrow regeneration niche? Plant Species Biology, 23, 111-118.
Calvino, C.I., Teruel, F.E. & Downie, S.R. (2016) The role of the Southern Hemisphere in the evolutionary history of Apiaceae, a mostly north temperate plant family. Journal of Biogeography, 43, 398-409.
Cao, J.S., Li, G.J., Qu, D.J., Li, X. & Wang, Y.N. (2020) Into the seed: auxin controls seed development and grain yield. International Journal of Molecular Sciences, 21, 1662.
Chahtane, H., Kim, W. & Lopez-Molina, L. (2017) Primary seed dormancy: a temporally multilayered riddle waiting to be unlocked. Journal of Experimental Botany, 68, 857-869.
Chen, F., Dahal, P. & Bradford, K.J. (2001) Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination. Plant Physiology, 127, 928-936.
Chiwocha, S.D.S., Cutler, A.J., Abrams, S.R., Ambrose, S.J., Yang, J., Ross, A.R.S. et al. (2005) The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. The Plant Journal, 42, 35-48.
Cho, J.S., Jang, B.K. & Lee, C.H. (2018) Seed dormancy and germination characteristics of the endangered species Cicuta virosa L. in South Korea. Horticulture, Environment, and Biotechnology, 59, 473-481.
da Silva, E.A., Toorop, P.E., Van Lammeren, A.A. & Hilhorst, H.W. (2008) ABA inhibits embryo cell expansion and early cell division events during coffee (Coffea arabica 'Rubi') seed germination. Annals of Botany, 102, 425-433.
de Farias, E.T., da Silva, E.A.A., Toorop, P.E., Bewley, J.D. & Hilhorst, H.W.M. (2015) Expression studies in the embryo and in the micropylar endosperm of germinating coffee (Coffea arabica cv. Rubi) seeds. Plant Growth Regulation, 75, 575-581.
de Miranda, R.M., Dias, D.C.F.D., Picoli, E.A.D., da Silva, P.P. & Nascimento, W.M. (2017) Physiological quality, anatomy and histochemistry during the development of carrot seeds (Daucus carota L.). Ciência e Agrotecnologia, 41, 169-180.
Dwarte, D. & Ashford, A.E. (1982) The chemistry and microstructure of protein bodies in celery endosperm. Botanical Gazette, 143, 164-175.
Fennimore, S.A. & Foley, M.E. (1998) Genetic and physiological evidence for the role of gibberellic acid in the germination of dormant Avena fatua seeds. Journal of Experimental Botany, 49, 89-94.
Fernandez-Pascual, E., Mattana, E. & Pritchard, H.W. (2019) Seeds of future past: climate change and the thermal memory of plant reproductive traits. Biological Reviews, 94, 439-456.
Finch-Savage, W.E. & Footitt, S. (2017) Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. Journal of Experimental Botany, 68, 843-856.
Finch-Savage, W.E. & Leubner-Metzger, G. (2006) Seed dormancy and the control of germination. New Phytologist, 171, 501-523.
Flokova, K., Tarkowska, D., Miersch, O., Strnad, M., Wasternack, C. & Novak, O. (2014) UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochem, 105, 147-157.
Forbis, T.A., Floyd, S.K. & deQueiroz, A. (2002) The evolution of embryo size in angiosperms and other seed plants: Implications for the evolution of seed dormancy. Evolution, 56, 2112-2125.
Friis, E.M., Crane, P.R., Pedersen, K.R., Stampanoni, M. & Marone, F. (2015) Exceptional preservation of tiny embryos documents seed dormancy in early angiosperms. Nature, 528, 551-554.
Graeber, K., Linkies, A., Steinbrecher, T., Mummenhoff, K., Tarkowská, D., Turečková, V. et al. (2014) DELAY OF GERMINATION 1 mediates a conserved coat dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proceedings of the National Academy of Sciences of the United States of America, 111, E3571-E3580.
Graeber, K., Linkies, A., Wood, A.T. & Leubner-Metzger, G. (2011) A guideline to family-wide comparative state-of-the-art quantitative RT-PCR analysis exemplified with a Brassicaceae cross-species seed germination case study. The Plant Cell, 23, 2045-2063.
Holloway, T., Steinbrecher, T., Perez, M., Seville, A., Stock, D., Nakabayashi, K. et al. (2021) Coleorhiza-enforced seed dormancy: a novel mechanism to control germination in grasses. New Phytologist, 229, 2179-2191.
Homrichhausen, T.M., Hewitt, J.R. & Nonogaki, H. (2003) Endo-ß-mannanase activity is associated with the completion of embryogenesis in imbibed carrot (Daucus carota L.) seeds. Seed Science Research, 13, 219-227.
Hopf, H. & Kandler, O. (1977) Characterization of reserve cellulose of endosperm of Carum carvi as a beta-(1-4)-mannan. Phytochem, 16, 1715-1717.
Hu, Y.L., Zhou, L.M., Huang, M.K., He, X.M., Yang, Y.H., Liu, X. et al. (2018) Gibberellins play an essential role in late embryogenesis of Arabidopsis. Nature Plants, 4, 289-298.
Huang, A.H. (1996) Oleosins and oil bodies in seeds and other organs. Plant Physiology, 110, 1055-1061.
Jacobsen, J.V. & Pressman, E. (1979) A structural study of germination in celery (Apium graveolens L.) seed with emphasis on endosperm breakdown. Planta, 144, 241-248.
Jacobsen, J.V., Pressman, E. & Pyliotis, N.A. (1976) Gibberellin-induced separation of cells in isolated endosperm of celery seed. Planta, 129, 113-122.
Kanno, Y., Jikumaru, Y., Hanada, A., Nambara, E., Abrams, S.R., Kamiya, Y. et al. (2010) Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant and Cell Physiology, 51, 1988-2001.
Kasahara, H. (2016) Current aspects of auxin biosynthesis in plants. Bioscience Biotechnology and Biochemistry, 80, 34-42.
Kim, Y.H. & Janick, J. (1991) Abscisic acid and proline improve desiccation tolerance and increase fatty acid content of celery somatic embryos. Plant Cell Tissue and Organ Culture, 24, 83-89.
Koryzniene, D., Jurkoniene, S., Zalnierius, T., Gaveliene, V., Jankovska-Bortkevic, E., Bareikiene, N. et al. (2019) Heracleum sosnowskyi seed development under the effect of exogenous application of GA3. PeerJ, 7, ARTN e6906.
Kushiro, T., Okamoto, M., Nakabayashi, K., Yamagishi, K., Kitamura, S., Asami, T. et al. (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism. European Molecular Biology Organization Journal, 23, 1647-1656.
Le, B.H., Cheng, C., Bui, A.Q., Wagmaister, J.A., Henry, K.F., Pelletier, J. et al. (2010) Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 107, 8063-8070.
Lefebvre, V., North, H., Frey, A., Sotta, B., Seo, M., Okamoto, M. et al. (2006) Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. The Plant Journal, 45, 309-319.
Leprince, O., Pellizzaro, A., Berriri, S. & Buitink, J. (2017) Late seed maturation: drying without dying. Journal of Experimental Botany, 68, 827-841.
Li, H.T., Yi, T.S., Gao, L.M., Ma, P.F., Zhang, T., Yang, J.B. et al. (2019) Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants, 5, 461-470.
Li, M.Y., Feng, K., Hou, X.L., Jiang, Q., Xu, Z.S., Wang, G.L. et al. (2020) The genome sequence of celery (Apium graveolens L.), an important leaf vegetable crop rich in apigenin in the Apiaceae family. Horticulture Research, 7, ARTN 9.
Linkies, A., Müller, K., Morris, K., Turečková, V., Cadman, C.S.C., Corbineau, F. et al. (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. The Plant Cell, 21, 3803-3822.
Liu, X.D., Zhang, H., Zhao, Y., Feng, Z.Y., Li, Q., Yang, H.Q. et al. (2013) Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 110, 15485-15490.
MacGregor, D.R., Kendall, S.L., Florance, H., Fedi, F., Moore, K., Paszkiewicz, K. et al. (2015) Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism. New Phytologist, 205, 642-652.
Manz, B., Müller, K., Kucera, B., Volke, F. & Leubner-Metzger, G. (2005) Water uptake and distribution in germinating tobacco seeds investigated in vivo by nuclear magnetic resonance imaging. Plant Physiology, 138, 1538-1551.
Martin, A.C. (1946) The comparative internal morphology of seeds. The American Midland Naturalist, 36, 513-660.
Matilla, A.J. (2020) Auxin: hormonal signal required for seed development and dormancy. Plants (Basel), 9, 705.
Nakabayashi, K., Okamoto, M., Koshiba, T., Kamiya, Y. & Nambara, E. (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. The Plant Journal, 41, 697-709.
Ni, B.-R. & Bradford, K.J. (1992) Quantitative models characterizing seed germination responses to abscisic acid and osmoticum. Plant Physiology, 98, 1057-1068.
Nonogaki, H. (2019) Seed germination and dormancy: The classic story, new puzzles, and evolution. Journal of Integrative Plant Biology, 61, 541-563.
Nonogaki, H., Gee, O.H. & Bradford, K.J. (2000) A germination-specific endo-ß-mannanase gene is expressed in the micropylar endosperm cap of tomato seeds. Plant Physiology, 123, 1235-1245.
Noor, A., Ziaf, K., Amjad, M. & Ahmad, I. (2020) Synthetic auxins concentration and application time modulates seed yield and quality of carrot by altering the umbel order. Sci Hortic-Amsterdam, 262, 109066.
Ogawa, M., Hanada, A., Yamauchi, Y., Kuwahara, A., Kamiya, Y. & Yamaguchi, S. (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. The Plant Cell, 15, 1591-1604.
Okamoto, M., Kuwahara, A., Seo, M., Kushiro, T., Asami, T., Hirai, N. et al. (2006) CYP707A1 and CYP707A2, which encode ABA 8'-hydroxylases, are indispensable for a proper control of seed dormancy and germination in Arabidopsis. Plant Physiology, 141, 97-107.
Oliva, R.N. & Bradford, K.J. (1987) Seed quality in carrots (Daucus carota L.)-influence of plant spacing and umbel order. HortScience, 22, 1127.
Olszewski, M., Pill, W., Pizzolato, T.D. & Pesek, J. (2005) Priming duration influences anatomy and germination responses of parsley mericarps. Journal of the American Society for Horticultural Science, 130, 754-758.
Pellizzaro, A., Neveu, M., Lalanne, D., Vu, B.L., Kanno, Y., Seo, M. et al. (2020) A role for auxin signaling in the acquisition of longevity during seed maturation. New Phytologist, 225, 284-296.
Porceddu, M., Mattana, E., Pritchard, H.W. & Bacchetta, G. (2017) Dissecting seed dormancy and germination in Aquilegia barbaricina, through thermal kinetics of embryo growth. Plant Biology, 19, 983-993.
Preston, J., Tatematsu, K., Kanno, Y., Hobo, T., Kimura, M., Jikumaru, Y. et al. (2009) Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant and Cell Physiology, 50, 1786-1800.
Ramakrishna, P., Ruiz Duarte, P., Rance, G.A., Schubert, M., Vordermaier, V., Vu, L.D. et al. (2019) EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation. Proceedings of the National Academy of Sciences of the United States of America, 116, 8597-8602.
Raz, V., Bergervoet, J.H.W. & Koornneef, M. (2001) Sequential steps for developmental arrest in Arabidopsis seeds. Development, 128, 243-252.
Ross, J.H.E. & Murphy, D.J. (1992) Biosynthesis and localization of storage proteins, oleosins and lipids during seed development in Coriandrum sativum and other Umbelliferae. Plant Science, 86, 59-70.
Scheler, C., Weitbrecht, K., Pearce, S.P., Hampstead, A., Buettner-Mainik, A., Lee, K. et al. (2015) Promotion of testa rupture during garden cress germination involves seed compartment-specific expression and activity of pectin methylesterases. Plant Physiology, 167, 200-215.
Shiota, H., Satoh, R., Watabe, K., Harada, H. & Kamada, H. (1998) C-ABI3, the carrot homologue of the Arabidopsis ABI3, is expressed during both zygotic and somatic embryogenesis and functions in the regulation of embryo-specific ABA-inducible genes. Plant and Cell Physiology, 39, 1184-1193.
Shu, K., Liu, X.D., Xie, Q. & He, Z.H. (2016) Two faces of one seed: hormonal regulation of dormancy and germination. Molecular Plant, 9, 34-45.
Simura, J., Antoniadi, I., Siroka, J., Tarkowska, D., Strnad, M., Ljung, K. et al. (2018) Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiology, 177, 476-489.
Steinbrecher, T. & Leubner-Metzger, G. (2018) Tissue and cellular mechanics of seeds. Current Opinion in Genetics & Development, 51, 1-10.
Still, D.W. & Bradford, K.J. (1998) Using hydrotime and ABA-time models to quantify seed quality of Brassicas during development. Journal of the American Society for Horticultural Science, 123, 692-699.
Toh, S., Imamura, A., Watanabe, A., Nakabayashi, K., Okamoto, M., Jikumaru, Y. et al. (2008) High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiology, 146, 1368-1385.
Toorop, P.E., van Aelst, A.C. & Hilhorst, H.W.M. (2000) The second step of the biphasic endosperm cap weakening that mediates tomato (Lycopersicon esculentum) seed germination is under control of ABA. Journal of Experimental Botany, 51, 1371-1379.
Unver, M.C. & Tilki, F. (2012) Salinity, germination promoting chemicals, temperature and light effects on seed germination of Anethum graveolens L. Bulgarian Journal of Agricultural Science, 18, 1005-1011.
Urbanova, T., Tarkowska, D., Novak, O., Hedden, P. & Strnad, M. (2013) Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry. Talanta, 112, 85-94.
Valenzuela-Riffo, F., Parra-Palma, C., Ramos, P. & Morales-Quintana, L. (2020) Molecular and structural insights into FaEXPA5, an alpha-expansin protein related with cell wall disassembly during ripening of strawberry fruit. Plant Physiology and Biochemistry, 154, 581-589.
Van der Toorn, P. & Karssen, C.M. (1992) Analysis of embryo growth in mature fruits of celery (Apium graveolens). Plysiologia Plantarum, 84, 593-599.
Vandelook, F., Janssens, S.B. & Probert, R.J. (2012) Relative embryo length as an adaptation to habitat and life cycle in Apiaceae. New Phytologist, 195, 479-487.
Weitbrecht, K., Müller, K. & Leubner-Metzger, G. (2011) First off the mark: early seed germination. Journal of Experimental Botany, 62, 3289-3309.
Wen, J., Yu, Y., Xie, D.F., Peng, C., Liu, Q., Zhou, S.D. et al. (2020) A transcriptome-based study on the phylogeny and evolution of the taxonomically controversial subfamily Apioideae (Apiaceae). Annals of Botany, 125, 937-953.
Wilhelmsson, P.K.I., Chandler, J.O., Fernandez-Pozo, N., Graeber, K., Ullrich, K.K., Arshad, W. et al. (2019) Usability of reference-free transcriptome assemblies for detection of differential expression: a case study on Aethionema arabicum dimorphic seeds. BMC Genomics, 20, ARTN 95.
Willis, C.G., Baskin, C.C., Baskin, J.M., Auld, J.R., Venable, D.L., Cavender-Bares, J. et al. (2014) The evolution of seed dormancy: environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytologist, 203, 300-309.
Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V. & Provart, N.J. (2007) An "electronic fluorescent pictograph" browser for exploring and analyzing large-scale biological data sets. PLoS One, 2, e718.
Yan, D., Duermeyer, L., Leoveanu, C. & Nambara, E. (2014) The functions of the endosperm during seed germination. Plant and Cell Physiology, 55, 1521-1533.
Zhang, K.L., Yao, L.J., Zhang, Y., Baskin, J.M., Baskin, C.C., Xiong, Z.M. et al. (2019) A review of the seed biology of Paeonia species (Paeoniaceae), with particular reference to dormancy and germination. Planta, 249, 291-303.
Grant Information:
BB/M02203X/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BB/M00192X/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council
Contributed Indexing:
Keywords: ABA-gibberellin balance; Apium graveolens (celery); auxin transport; dormancy evolution; embryo growth; endosperm breakdown; morphological dormancy; underdeveloped embryo
Molecular Sequence:
figshare 10.17637/rh.14139821.v1
Substance Nomenclature:
0 (Gibberellins)
0 (Indoleacetic Acids)
0 (Plant Growth Regulators)
6U1S09C61L (indoleacetic acid)
Entry Date(s):
Date Created: 20210912 Date Completed: 20220124 Latest Revision: 20220124
Update Code:
20240105
DOI:
10.1111/tpj.15489
PMID:
34510583
Czasopismo naukowe
Underdeveloped (small) embryos embedded in abundant endosperm tissue, and thus having morphological dormancy (MD) or morphophysiological dormancy (MPD), are considered to be the ancestral state in seed dormancy evolution. This trait is retained in the Apiaceae family, which provides excellent model systems for investigating the underpinning mechanisms. We investigated Apium graveolens (celery) MD by combined innovative imaging and embryo growth assays with the quantification of hormone metabolism, as well as the analysis of hormone and cell-wall related gene expression. The integrated experimental results demonstrated that embryo growth occurred inside imbibed celery fruits in association with endosperm degradation, and that a critical embryo size was required for radicle emergence. The regulation of these processes depends on gene expression leading to gibberellin and indole-3-acetic acid (IAA) production by the embryo and on crosstalk between the fruit compartments. ABA degradation associated with distinct spatiotemporal patterns in ABA sensitivity control embryo growth, endosperm breakdown and radicle emergence. This complex interaction between gibberellins, IAA and ABA metabolism, and changes in the tissue-specific sensitivities to these hormones is distinct from non-MD seeds. We conclude that the embryo growth to reach the critical size and the associated endosperm breakdown inside MD fruits constitute a unique germination programme.
(© 2021 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies