Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Optimal plasticity for memory maintenance during ongoing synaptic change.

Tytuł:
Optimal plasticity for memory maintenance during ongoing synaptic change.
Autorzy:
Raman DV; Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
O'Leary T; Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
Źródło:
ELife [Elife] 2021 Sep 14; Vol. 10. Date of Electronic Publication: 2021 Sep 14.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Cambridge, UK : eLife Sciences Publications, Ltd., 2012-
MeSH Terms:
Behavior, Animal*
Memory*
Models, Neurological*
Neuronal Plasticity*
Synaptic Transmission*
Brain/*physiology
Neural Pathways/*physiology
Neurons/*physiology
Animals ; Brain/cytology ; Computer Simulation ; Humans ; Mice ; Neural Pathways/cytology ; Rats ; Time Factors
References:
Sci Rep. 2016 May 25;6:26651. (PMID: 27221801)
Neuroscience. 2017 Aug 15;357:172-184. (PMID: 28602920)
Ann N Y Acad Sci. 2010 Mar;1191:27-41. (PMID: 20392274)
Nat Neurosci. 2011 Feb;14(2):147-53. (PMID: 21270783)
Front Cell Neurosci. 2019 Jun 27;13:291. (PMID: 31316356)
Philos Trans R Soc Lond B Biol Sci. 2017 Mar 5;372(1715):. (PMID: 28093555)
Science. 1997 Jan 10;275(5297):213-5. (PMID: 8985014)
Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18315-20. (PMID: 24151334)
Nature. 2015 Jul 30;523(7562):592-6. (PMID: 26098371)
Nat Commun. 2019 Sep 30;10(1):4441. (PMID: 31570719)
J Neurosci. 2015 Sep 9;35(36):12535-44. (PMID: 26354919)
Trends Cogn Sci. 2019 Mar;23(3):235-250. (PMID: 30704969)
Neuron. 2005 Apr 21;46(2):181-9. (PMID: 15848798)
Nature. 1996 Sep 5;383(6595):76-81. (PMID: 8779718)
Science. 2017 Sep 8;357(6355):1033-1036. (PMID: 28883072)
J Neurosci. 1982 Jan;2(1):32-48. (PMID: 7054394)
J Neurophysiol. 2019 Jul 1;122(1):66-80. (PMID: 30969897)
Neuron. 2003 Dec 18;40(6):1063-73. (PMID: 14687542)
Cell. 2015 Jul 30;162(3):648-61. (PMID: 26232230)
Nat Neurosci. 2018 Oct;21(10):1463-1470. (PMID: 30224809)
Elife. 2020 Jul 14;9:. (PMID: 32660692)
Curr Opin Neurobiol. 2017 Oct;46:7-13. (PMID: 28710971)
J Neurosci. 1998 Dec 15;18(24):10464-72. (PMID: 9852584)
PLoS Biol. 2016 Oct 24;14(10):e1002572. (PMID: 27776122)
J Neurosci. 2008 Dec 10;28(50):13592-608. (PMID: 19074033)
Curr Opin Neurobiol. 2019 Oct;58:141-147. (PMID: 31569062)
PLoS Biol. 2009 Jun 23;7(6):e1000136. (PMID: 19554080)
Nature. 2012 Feb 19;483(7387):87-91. (PMID: 22343895)
Elife. 2017 Dec 05;6:. (PMID: 29205151)
Proc Natl Acad Sci U S A. 2019 May 21;116(21):10537-10546. (PMID: 31061133)
Nat Commun. 2020 Jul 17;11(1):3625. (PMID: 32681001)
Annu Rev Neurosci. 2017 Jul 25;40:581-602. (PMID: 28772098)
J Neurosci. 2011 Jun 29;31(26):9481-8. (PMID: 21715613)
Trends Neurosci. 2003 Jul;26(7):360-8. (PMID: 12850432)
Neuroscience. 2011 Dec 15;198:152-70. (PMID: 22015923)
Elife. 2019 May 10;8:. (PMID: 31074745)
Elife. 2018 Nov 12;7:. (PMID: 30418871)
Nature. 2015 Sep 17;525(7569):333-8. (PMID: 26352471)
Nat Commun. 2016 Nov 08;7:13276. (PMID: 27824044)
Curr Opin Neurobiol. 2021 Apr;67:207-214. (PMID: 33508698)
eNeuro. 2018 Apr 24;5(2):. (PMID: 29696150)
Elife. 2015 Nov 30;4:e10778. (PMID: 26618907)
J Physiol. 2011 Oct 15;589(Pt 20):4811-26. (PMID: 21825033)
Nat Rev Neurosci. 2007 Apr;8(4):262-75. (PMID: 17342174)
Neuron. 2005 Feb 17;45(4):599-611. (PMID: 15721245)
Elife. 2019 May 24;8:. (PMID: 31124785)
Phys Rev A. 1992 Apr 15;45(8):6056-6091. (PMID: 9907706)
Elife. 2018 Jun 22;7:. (PMID: 29932052)
Psychol Rev. 2001 Apr;108(2):311-45. (PMID: 11381832)
Neuron. 2005 Jan 20;45(2):279-91. (PMID: 15664179)
Trends Neurosci. 2018 Feb;41(2):89-99. (PMID: 29275902)
Nat Rev Neurosci. 2020 Jun;21(6):335-346. (PMID: 32303713)
Contributed Indexing:
Keywords: computational biology; learning; lifelong learning; mathematical modelling; memory; neural circuits; neuroscience; none; optimization; synaptic plasticity; systems biology
Entry Date(s):
Date Created: 20210914 Date Completed: 20211027 Latest Revision: 20211027
Update Code:
20240105
PubMed Central ID:
PMC8504970
DOI:
10.7554/eLife.62912
PMID:
34519270
Czasopismo naukowe
Synaptic connections in many brain circuits fluctuate, exhibiting substantial turnover and remodelling over hours to days. Surprisingly, experiments show that most of this flux in connectivity persists in the absence of learning or known plasticity signals. How can neural circuits retain learned information despite a large proportion of ongoing and potentially disruptive synaptic changes? We address this question from first principles by analysing how much compensatory plasticity would be required to optimally counteract ongoing fluctuations, regardless of whether fluctuations are random or systematic. Remarkably, we find that the answer is largely independent of plasticity mechanisms and circuit architectures: compensatory plasticity should be at most equal in magnitude to fluctuations, and often less, in direct agreement with previously unexplained experimental observations. Moreover, our analysis shows that a high proportion of learning-independent synaptic change is consistent with plasticity mechanisms that accurately compute error gradients.
Competing Interests: DR No competing interests declared, TO Reviewing editor, eLife
(© 2021, Raman and O'Leary.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies