Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Flexible constraint hierarchy during the visual encoding of tool-object interactions.

Tytuł:
Flexible constraint hierarchy during the visual encoding of tool-object interactions.
Autorzy:
Bayani KYT; School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
Natraj N; School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.; Weill Institute of Neurosciences, University of California, San Francisco, California, USA.
Gale MK; School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
Temples D; School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
Atawala N; School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
Wheaton LA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
Źródło:
The European journal of neuroscience [Eur J Neurosci] 2021 Oct; Vol. 54 (7), pp. 6520-6532. Date of Electronic Publication: 2021 Sep 27.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: : Oxford : Wiley-Blackwell
Original Publication: Oxford, UK : Published on behalf of the European Neuroscience Association by Oxford University Press, c1989-
MeSH Terms:
Hand Strength*
Psychomotor Performance*
Biomechanical Phenomena ; Humans ; Orientation ; Posture ; Visual Perception
References:
Ambrosini, E., Costantini, M., & Sinigaglia, C. (2011). Grasping with the eyes. Journal of Neurophysiology, 106, 1437-1442. https://doi.org/10.1152/jn.00118.2011.
Bekkali, S., Youssef, G. J., Donaldson, P. H., He, J., Do, M., Hyde, C., Barhoun, P., & Enticott, P. G. (2020). Do gaze behaviours during action observation predict interpersonal motor resonance? Social Cognitive and Affective Neuroscience, 1-11. https://doi.org/10.1093/scan/nsaa106.
Borghi, A. M., Flumini, A., Natraj, N., & Wheaton, L. A. (2012). One hand, two objects: Emergence of affordance in contexts. Brain and Cognition, 80, 64-73. https://doi.org/10.1016/j.bandc.2012.04.007.
Borghi, A. M., & Riggio, L. (2015). Stable and variable affordances are both automatic and flexible. Frontiers in Human Neuroscience, 9, 1-17. https://doi.org/10.3389/fnhum.2015.00351.
Bulloch, M. C., Prime, S. L., & Marotta, J. J. (2015). Anticipatory gaze strategies when grasping moving objects. Experimental Brain Research, 233, 3413-3423. https://doi.org/10.1007/s00221-015-4413-7.
Buxbaum, L. J. (2000). Function and manipulation tool knowledge in apraxia: Knowing ‘what for’ but not ‘how’. Neurocase, 6, 97-97. https://doi.org/10.1093/neucas/6.2.97.
Buxbaum, L. J., & Saffran, E. M. (2002). Knowledge of object manipulation and object function: Dissociations in apraxic and nonapraxic subjects. Brain and Language, 82, 179-199. https://doi.org/10.1016/S0093-934X(02)00014-7.
Comalli, D. M., Keen, R., Abraham, E. S., Foo, V. J., Lee, M. H., & Adolph, K. E. (2016). The development of tool use: Planning for end-state comfort. Developmental Psychology, 52, 878-1892. https://doi.org/10.1037/dev0000207.
Dickinson, C. A., & Intraub, H. (2009). Spatial asymmetries in viewing and remembering scenes: Consequences of an attentional bias? Attention, Perception, & Psychophysics, 71, 1251-1262. https://doi.org/10.3758/APP.71.6.1251.
Donaldson, P. H., Gurvich, C., Fielding, J., & Enticott, P. G. (2015). Exploring associations between gaze patterns and putative human mirror neuron system activity. Frontiers in Human Neuroscience, 9, 1-11.
Elsner, C., D'Ausilio, A., Gredebäck, G., D'Ausilio, A., Falck-Ytter, T., & Fadiga, L. (2012). The motor cortex is causally related to predictive eye movements during action observation. Neuropsychologia, 51, 488-492. https://doi.org/10.1016/j.neuropsychologia.2012.12.007.
Federico, G., & Brandimonte, M. A. (2020). Looking to recognise: The pre-eminence of semantic over sensorimotor processing in human tool use. Scientific Reports, 10, 1-16. https://doi.org/10.1038/s41598-020-63045-0.
Flanagan, J. R., Bowman, M. C., & Johansson, R. S. (2006). Control strategies in object manipulation tasks. Current Opinion in Neurobiology, 16, 650-659. https://doi.org/10.1016/j.conb.2006.10.005.
Flanagan, J. R., & Johansson, R. S. (2003). Action plans used in action observation. Nature, 424, 769-771. https://doi.org/10.1038/nature01861.
Grafton, S. T., & Hamilton, A. F. D. C. (2007). Evidence for a distributed hierarchy of action representation in the brain. Human Movement Science, 26, 590-616. https://doi.org/10.1016/j.humov.2007.05.009.
Hamilton, A. F. d. C. (2006). Goal representation in human anterior intraparietal sulcus. The Journal of Neuroscience, 26, 1133-1137. https://doi.org/10.1523/JNEUROSCI.4551-05.2006.
Hamilton, A. F. d. C., & Grafton, S. T. (2008). Action outcomes are represented in human inferior frontoparietal cortex. Cerebral Cortex, 18, 1160-1168. https://doi.org/10.1093/cercor/bhm150.
Jarry, C., Osiurak, F., Delafuys, D., Chauviré, V., Etcharry-Bouyx, F., & Le Gall, D. (2013). Apraxia of tool use: More evidence for the technical reasoning hypothesis. Cortex, 49, 2322-2333. https://doi.org/10.1016/j.cortex.2013.02.011.
Jovanovic, B., & Schwarzer, G. (2017). The influence of grasping habits and object orientation on motor planning in children and adults. Developmental Psychobiology, 59, 949-957. https://doi.org/10.1002/dev.21573.
Kano, F., & Call, J. (2014). Great apes generate goal-based action predictions: An eye-tracking study. Psychological Science, 25, 1691-1698. https://doi.org/10.1177/0956797614536402.
Keen, R. (2011). The development of problem solving in young children: A critical cognitive skill. Annual Review of Psychology, 62, 1-21. https://doi.org/10.1146/annurev.psych.031809.130730.
Kelly, R., Mizelle, J. C., & Wheaton, L. A. (2015). Distinctive laterality of neural networks supporting action understanding in left- and right-handed individuals: An EEG coherence study. Neuropsychologia, 75, 20-29. https://doi.org/10.1016/j.neuropsychologia.2015.05.016.
König, P., Osnabrück, U., Ossandón, J. P., Ehinger, B. V., Osnabrück, U., Gameiro, R. R., Osnabrück, U., & Kaspar, K. (2016). Eye movements as a window to cognitive processes. Journal of Eye Movement Research, 9, 1-16. https://doi.org/10.16910/jemr.9.5.3.
Leonetti, A., Puglisi, G., Siugzdaite, R., Ferrari, C., Cerri, G., & Borroni, P. (2015). What you see is what you get: Motor resonance in peripheral vision. Experimental Brain Research, 233, 3013-3022. https://doi.org/10.1007/s00221-015-4371-0.
Maranesi, M., Ugolotti Serventi, F., Bruni, S., Bimbi, M., Fogassi, L., & Bonini, L. (2013). Monkey gaze behaviour during action observation and its relationship to mirror neuron activity. The European Journal of Neuroscience, 38, 3721-3730. https://doi.org/10.1111/ejn.12376.
Mizelle, J. C., & Wheaton, L. A. (2010). The neuroscience of storing and molding tool action concepts: How “plastic” is grounded cognition? Frontiers in Psychology, 1, 1-9.
Mizelle, J. C., & Wheaton, L. A. (2014). How can we improve our understanding of skillful motor control and apraxia? Insights from theories of “affordances”. Frontiers in Human Neuroscience, 8, 1-2. https://doi.org/10.3389/fnhum.2014.00612.
Natraj, N., Alterman, B., Basunia, S., & Wheaton, L. A. (2018). The role of attention and saccades on Parieto frontal encoding of contextual and grasp-specific affordances of tools: An ERP study. Neuroscience, 394, 243-266. https://doi.org/10.1016/j.neuroscience.2018.10.019.
Natraj, N., Pella, Y. M., Borghi, A. M., & Wheaton, L. A. (2015a). The visual encoding of tool-object affordances. Neuroscience, 310, 512-527. https://doi.org/10.1016/j.neuroscience.2015.09.060.
Natraj, N., Poole, V., Mizelle, J. C., Flumini, A., Borghi, A. M., & Wheaton, L. A. (2013). Context and hand posture modulate the neural dynamics of tool-object perception. Neuropsychologia, 51, 506-519. https://doi.org/10.1016/j.neuropsychologia.2012.12.003.
Osiurak, F., & Badets, A. (2016). Tool use and affordance: Manipulation-based versus reasoning-based approaches. Psychological Review, 123, 534-568. https://doi.org/10.1037/rev0000027.
Ossandón, J. P., Onat, S., & König, P. (2014). Spatial biases in viewing behavior. Journal of Vision, 14, 1-26. https://doi.org/10.1167/14.2.20.
Seegelke, C., & Weigelt, M. (2018). Anticipating different grips reduces bimanual end-state comfort: A tradeoff between goal-related and means-related planning processes. PLoS ONE, 13, 1-17. https://doi.org/10.1371/journal.pone.0190586.
Spalek, T. M., & Hammad, S. (2005). The left-to-right bias in inhibition of return is due to the direction of reading. Psychological Science, 16, 15-18. https://doi.org/10.1111/j.0956-7976.2005.00774.x.
van Elk, M., van Schie, H., & Bekkering, H. (2014). Action semantics: A unifying conceptual framework for the selective use of multimodal and modality-specific object knowledge. Physics of Life Reviews, 11, 220-250. https://doi.org/10.1016/j.plrev.2013.11.005.
Wunsch, K., & Weigelt, M. (2016). A three-stage model for the acquisition of anticipatory planning skills for grip selection during object manipulation in young children. Frontiers in Psychology, 7, 1-5. https://doi.org/10.3389/fpsyg.2016.00958.
Yoon, E. Y., Humphreys, G. W., & Riddoch, M. J. (2010). The paired-object affordance effect. Journal of Experimental Psychology. Human Perception and Performance, 36, 812-824. https://doi.org/10.1037/a0017175.
Contributed Indexing:
Keywords: action hierarchy; attention; end-state comfort; eye tracking; tool use
Entry Date(s):
Date Created: 20210915 Date Completed: 20211101 Latest Revision: 20211101
Update Code:
20240105
DOI:
10.1111/ejn.15460
PMID:
34523764
Czasopismo naukowe
Tools and objects are associated with numerous action possibilities that are reduced depending on the task-related internal and external constraints presented to the observer. Action hierarchies propose that goals represent higher levels of the hierarchy while kinematic patterns represent lower levels of the hierarchy. Prior work suggests that tool-object perception is heavily influenced by grasp and action context. The current study sought to evaluate whether the presence of action hierarchy can be perceptually identified using eye tracking during tool-object observation. We hypothesize that gaze patterns will reveal a perceptual hierarchy based on the observed task context and grasp constraints. Participants viewed tool-objects scenes with two types of constraints: task-context and grasp constraints. Task-context constraints consisted of correct (e.g., frying pan-spatula) and incorrect tool-object pairings (e.g., stapler-spatula). Grasp constraints involved modified tool orientations, which requires participants to understand how initially awkward grasp postures can help achieve the task. The visual scene contained three areas of interests (AOIs): the object, the functional tool-end (e.g., spoon handle) and the manipulative tool-end (e.g., spoon bowl). Results revealed two distinct processes based on stimuli constraints. Goal-oriented encoding, the attentional bias towards the object and manipulative tool-end, was demonstrated when grasp did not lead to meaningful tool-use. In images where grasp postures were critical to action performance, attentional bias was primarily between the object and functional tool-end, which suggests means-related encoding of the graspable properties of the object. This study expands from previous work and demonstrates a flexible constraint hierarchy depending on the observed task constraints.
(© 2021 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies