Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

LncRNA SNHG14 contributes to proinflammatory cytokine production in rheumatoid arthritis via the regulation of the miR-17-5p/MINK1-JNK pathway.

Tytuł:
LncRNA SNHG14 contributes to proinflammatory cytokine production in rheumatoid arthritis via the regulation of the miR-17-5p/MINK1-JNK pathway.
Autorzy:
Zhang J; Department of Rheumatism and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
Lei H; Department of Rheumatism and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
Li X; Department of Rheumatism and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
Źródło:
Environmental toxicology [Environ Toxicol] 2021 Dec; Vol. 36 (12), pp. 2484-2492. Date of Electronic Publication: 2021 Sep 16.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: New York, NY : John Wiley & Sons, c1999-
MeSH Terms:
Arthritis, Rheumatoid*/genetics
MicroRNAs*/genetics
MicroRNAs*/metabolism
RNA, Long Noncoding*/genetics
RNA, Long Noncoding*/metabolism
Protein Serine-Threonine Kinases/*metabolism
Cell Proliferation ; Cytokines/genetics ; Humans ; MAP Kinase Signaling System
References:
Croia C, Bursi R, Sutera D, Petrelli F, Alunno A, Puxeddu I. One year in review 2019: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 2019;37(3):347-357.
Scherer HU, Haupl T, Burmester GR. The etiology of rheumatoid arthritis. J Autoimmun. 2020;110:102400. https://doi.org/10.1016/j.jaut.2019.102400.
Derksen V, Huizinga TWJ, van der Woude D. The role of autoantibodies in the pathophysiology of rheumatoid arthritis. Semin Immunopathol. 2017;39(4):437-446. https://doi.org/10.1007/s00281-017-0627-z.
McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet (London, England). 2017;389(10086):2328-2337. https://doi.org/10.1016/s0140-6736(17)31472-1.
Masoud S, Lim PB, Kitas GD, Panoulas V. Sudden cardiac death in patients with rheumatoid arthritis. World J Cardiol. 2017;9(7):562-573. https://doi.org/10.4330/wjc.v9.i7.562.
Li S, Su J, Cai W, Liu JX. Nanomaterials manipulate macrophages for rheumatoid arthritis treatment. Front Pharmacol. 2021;12:699245. https://doi.org/10.3389/fphar.2021.699245.
Marques-Rocha JL, Samblas M, Milagro FI, Bressan J, Martínez JA, Marti A. Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J. 2015;29(9):3595-3611. https://doi.org/10.1096/fj.14-260323.
Cremer S, Michalik KM, Fischer A, et al. Hematopoietic deficiency of the long noncoding RNA MALAT1 promotes atherosclerosis and plaque inflammation. Circulation. 2019;139(10):1320-1334. https://doi.org/10.1161/circulationaha.117.029015.
Zhou Q, Huang XR, Yu J, Yu X, Lan HY. Long noncoding RNA Arid2-IR is a novel therapeutic target for renal inflammation. Mol Ther. 2015;23(6):1034-1043. https://doi.org/10.1038/mt.2015.31.
Lu MC, Yu HC, Yu CL, et al. Increased expression of long noncoding RNAs LOC100652951 and LOC100506036 in T cells from patients with rheumatoid arthritis facilitates the inflammatory responses. Immunol Res. 2016;64(2):576-583. https://doi.org/10.1007/s12026-015-8756-8.
Zhong Y, Yu C, Qin W. LncRNA SNHG14 promotes inflammatory response induced by cerebral ischemia/reperfusion injury through regulating miR-136-5p /ROCK1. Cancer Gene Ther. 2019;26(7-8):234-247. https://doi.org/10.1038/s41417-018-0067-5.
Zhu J, Bai J, Wang S, Dong H. Down-regulation of long non-coding RNA SNHG14 protects against acute lung injury induced by lipopolysaccharide through microRNA-34c-3p-dependent inhibition of WISP1. Respir Res. 2019;20(1):233. https://doi.org/10.1186/s12931-019-1207-7.
Bao MH, Szeto V, Yang BB, Zhu SZ, Sun HS, Feng ZP. Long non-coding RNAs in ischemic stroke. Cell Death Dis. 2018;9(3):281. https://doi.org/10.1038/s41419-018-0282-x.
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell. 2011;146(3):353-358. https://doi.org/10.1016/j.cell.2011.07.014.
Jiang H, Ma R, Zou S, Wang Y, Li Z, Li W. Reconstruction and analysis of the lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in rheumatoid arthritis. Mol Biosyst. 2017;13(6):1182-1192. https://doi.org/10.1039/c7mb00094d.
Paltoglou S, Das R, Townley SL, et al. Novel androgen receptor coregulator GRHL2 exerts both oncogenic and antimetastatic functions in prostate cancer. Cancer Res. 2017;77(13):3417-3430. https://doi.org/10.1158/0008-5472.CAN-16-1616.
Kong F, Jin J, Lv X, et al. Long noncoding RNA RMRP upregulation aggravates myocardial ischemia-reperfusion injury by sponging miR-206 to target ATG3 expression. Biomed Pharmacother. 2019;109:716-725. https://doi.org/10.1016/j.biopha.2018.10.079.
Deng Z, Ou H, Ren F, et al. LncRNA SNHG14 promotes OGD/R-induced neuron injury by inducing excessive mitophagy via miR-182-5p/BINP3 axis in HT22 mouse hippocampal neuronal cells. Biol Res. 2020;53(1):38. https://doi.org/10.1186/s40659-020-00304-4.
Qi X, Shao M, Sun H, Shen Y, Meng D, Huo W. Long non-coding RNA SNHG14 promotes microglia activation by regulating miR-145-5p/PLA2G4A in cerebral infarction. Neuroscience. 2017;348:98-106. https://doi.org/10.1016/j.neuroscience.2017.02.002.
Ji N, Wang Y, Bao G, Yan J, Ji S. LncRNA SNHG14 promotes the progression of cervical cancer by regulating miR-206/YWHAZ. Pathol Res Pract. 2019;215(4):668-675. https://doi.org/10.1016/j.prp.2018.12.026.
Matboli M, Shafei AE, Ali MA, et al. Role of extracellular LncRNA-SNHG14/miRNA-3940-5p/NAP12 mRNA in colorectal cancer. Arch Physiol Biochem. 2019;1-7. https://doi.org/10.1080/13813455.2019.1650070.
Alam J, Jantan I, Bukhari SNA. Rheumatoid arthritis: recent advances on its etiology, role of cytokines and pharmacotherapy. Biomed Pharmacother. 2017;92:615-633. https://doi.org/10.1016/j.biopha.2017.05.055.
Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity. 2017;46(2):183-196. https://doi.org/10.1016/j.immuni.2017.02.006.
Falconer J, Murphy AN, Young SP, et al. Review: synovial cell metabolism and chronic inflammation in rheumatoid arthritis. Arthritis Rheumatol (Hoboken, NJ). 2018;70(7):984-999. https://doi.org/10.1002/art.40504.
Weyand CM, Zeisbrich M, Goronzy JJ. Metabolic signatures of T-cells and macrophages in rheumatoid arthritis. Curr Opin Immunol. 2017;46:112-120. https://doi.org/10.1016/j.coi.2017.04.010.
Davignon JL, Hayder M, Baron M, et al. Targeting monocytes/macrophages in the treatment of rheumatoid arthritis. Rheumatology (Oxford, England). 2013;52(4):590-598. https://doi.org/10.1093/rheumatology/kes304.
Di Benedetto P, Ruscitti P, Vadasz Z, Toubi E, Giacomelli R. Macrophages with regulatory functions, a possible new therapeutic perspective in autoimmune diseases. Autoimmun Rev. 2019;18(10):102369. https://doi.org/10.1016/j.autrev.2019.102369.
Luo ZF, Peng Y, Liu FH, et al. Long noncoding RNA SNHG14 promotes malignancy of prostate cancer by regulating with miR-5590-3p/YY1 axis. Eur Rev Med Pharmacol Sci. 2020;24(9):4697-4709. https://doi.org/10.26355/eurrev_202005_21158.
Zhao L, Liu Y, Zhang J, Liu Y, Qi Q. LncRNA SNHG14/miR-5590-3p/ZEB1 positive feedback loop promoted diffuse large B cell lymphoma progression and immune evasion through regulating PD-1/PD-L1 checkpoint. Cell Death Dis. 2019;10(10):731. https://doi.org/10.1038/s41419-019-1886-5.
Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. 2016;96(4):1297-1325. https://doi.org/10.1152/physrev.00041.2015.
Fan R, Xiao C, Wan X, et al. Small molecules with big roles in microRNA chemical biology and microRNA-targeted therapeutics. RNA Biol. 2019;16(6):707-718. https://doi.org/10.1080/15476286.2019.1593094.
Li X, Zeng L, Cao C, et al. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy. Exp Cell Res. 2017;350(2):327-335. https://doi.org/10.1016/j.yexcr.2016.12.006.
Yan S, Wang P, Wang J, et al. Long non-coding RNA HIX003209 promotes inflammation by sponging miR-6089 via TLR4/NF-kappaB signaling pathway in rheumatoid arthritis. Front Immunol. 2019;10:2218. https://doi.org/10.3389/fimmu.2019.02218.
Najm A, Masson FM, Preuss P, et al. miR-17-5p reduces inflammation and bone erosions in collagen induced arthritis mice and directly targets the JAK-STAT pathway in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatol (Hoboken, NJ). 2020;72(12):2030-2039. https://doi.org/10.1002/art.41441.
Fu G, Xu Q, Qiu Y, et al. Suppression of Th17 cell differentiation by misshapen/NIK-related kinase MINK1. J Exp Med. 2017;214(5):1453-1469. https://doi.org/10.1084/jem.20161120.
Martinez GJ. MINK1: the missing link between ROS and its inhibition of Th17 cells. J Exp Med. 2017;214(5):1205-1206. https://doi.org/10.1084/jem.20170571.
Broce IJ, Tan CH, Fan CC, et al. Dissecting the genetic relationship between cardiovascular risk factors and Alzheimer's disease. Acta Neuropathol. 2019;137(2):209-226. https://doi.org/10.1007/s00401-018-1928-6.
Yu D, Hu J, Sheng Z, et al. Dual roles of misshapen/NIK-related kinase (MINK1) in osteoarthritis subtypes through the activation of TGFβ signaling. Osteoarthr Cartil. 2020;28(1):112-121. https://doi.org/10.1016/j.joca.2019.09.009.
Nicke B, Bastien J, Khanna SJ, et al. Involvement of MINK, a Ste20 family kinase, in Ras oncogene-induced growth arrest in human ovarian surface epithelial cells. Mol Cell. 2005;20(5):673-685. https://doi.org/10.1016/j.molcel.2005.10.038.
Contributed Indexing:
Keywords: MINK1; SNHG14; miR-17-5p; rheumatoid arthritis
Substance Nomenclature:
0 (Cytokines)
0 (MIRN17 microRNA, human)
0 (MicroRNAs)
0 (RNA, Long Noncoding)
EC 2.7.11.1 (MINK1 protein, human)
EC 2.7.11.1 (Protein Serine-Threonine Kinases)
Entry Date(s):
Date Created: 20210916 Date Completed: 20211104 Latest Revision: 20220531
Update Code:
20240105
DOI:
10.1002/tox.23361
PMID:
34529319
Czasopismo naukowe
Rheumatoid arthritis (RA) is a widespread autoimmune disorder of the joints. Long noncoding RNAs (lncRNAs) have been reported to participate in the pathogenesis of RA by serving as competitive endogenous RNAs. LncRNA small nucleolar RNA host gene 14 (SNHG14) is involved in the development of various diseases. Here, we found that high expression of SNHG14 in RA was closely related to the disease activity. Functional assays indicated that SNHG14 knockdown obviously hampered phorbol myristate acetate-activated THP-1 (pTHP-1) cell proliferation and proinflammatory cytokines production. In mechanism, SNHG14 served as a sponge of microRNA-17-5p (miR-17-5p), and misshapen like kinase 1 (MINK1) was a target of miR-17-5p. SNHG14 depletion-induced inhibitory effects on cell proliferation and inflammatory response were reversed by MINK1 overexpression in macrophages. Moreover, SNHG14 promoted the jun N-terminal kinase (JNK) signaling via the miR-17-5p/MINK1 axis. Overall, SNHG14 boosted the process of RA by MINK1 activating the JNK pathway.
(© 2021 Wiley Periodicals LLC.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies