Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A Scalable Artificial Neuron Based on Ultrathin Two-Dimensional Titanium Oxide.

Tytuł:
A Scalable Artificial Neuron Based on Ultrathin Two-Dimensional Titanium Oxide.
Autorzy:
Wang J; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China.
Teng C; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China.
Zhang Z; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China.
Chen W; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China.
Tan J; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China.
Pan Y; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China.
Zhang R; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China.
Zhou H; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China.
Ding B; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China.
Cheng HM; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China.; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
Liu B; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China.
Źródło:
ACS nano [ACS Nano] 2021 Sep 28; Vol. 15 (9), pp. 15123-15131. Date of Electronic Publication: 2021 Sep 17.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Washington D.C. : American Chemical Society
MeSH Terms:
Models, Neurological*
Neural Networks, Computer*
Humans ; Neurons/physiology ; Titanium
Contributed Indexing:
Keywords: 2D materials; Langmuir−Blodgett assembly; artificial neuron; leaky integrate-and-fire; spiking neural network; titanium oxide
Substance Nomenclature:
15FIX9V2JP (titanium dioxide)
D1JT611TNE (Titanium)
Entry Date(s):
Date Created: 20210917 Date Completed: 20211008 Latest Revision: 20220531
Update Code:
20240105
DOI:
10.1021/acsnano.1c05565
PMID:
34534433
Czasopismo naukowe
A spiking neural network consists of artificial synapses and neurons and may realize human-level intelligence. Unlike the widely reported artificial synapses, the fabrication of large-scale artificial neurons with good performance is still challenging due to the lack of a suitable material system and integration method. Here, we report an ultrathin (less than10 nm) and inch-size two-dimensional (2D) oxide-based artificial neuron system produced by a controllable assembly of solution-processed 2D monolayer TiO x nanosheets. Artificial neuron devices based on such 2D TiO x films show a high on/off ratio of 10 9 and a volatile resistance switching phenomenon. The devices can not only emulate the leaky integrate-and-fire activity but also self-recover without additional circuits for sensing and reset. Moreover, the artificial neuron arrays are fabricated and exhibited good uniformity, indicating their large-area integration potential. Our results offer a strategy for fabricating large-scale and ultrathin 2D material-based artificial neurons and 2D spiking neural networks.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies