Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Fixed- and Random-Effects Models.

Tytuł:
Fixed- and Random-Effects Models.
Autorzy:
Kanters S; School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada. .; RainCity Analytics, Vancouver, BC, Canada. .
Źródło:
Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2022; Vol. 2345, pp. 41-65.
Typ publikacji:
Journal Article; Meta-Analysis
Język:
English
Imprint Name(s):
Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
MeSH Terms:
Linear Models*
Bayes Theorem
References:
Glass G (1976) Primary, secondary, and meta-analysis of research. Educ Res 5(10):3–8. (PMID: 10.3102/0013189X005010003)
Feinstein AR (1995) Meta-analysis: statistical alchemy for the 21st century. J Clin Epidemiol 48(1):71–79. https://doi.org/10.1016/0895-4356(94)00110-c. (PMID: 10.1016/0895-4356(94)00110-c7853050)
DerSimonian R, Laird N (2015) Meta-analysis in clinical trials revisited. Contemp Clin Trials 45(Pt A):139–145. https://doi.org/10.1016/j.cct.2015.09.002. (PMID: 10.1016/j.cct.2015.09.002263437454639420)
Hoaglin DC (2016) Misunderstandings about Q and ‘Cochran’s Q test’ in meta-analysis. Stat Med 35(4):485–495. https://doi.org/10.1002/sim.6632. (PMID: 10.1002/sim.663226303773)
Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748. (PMID: 1365506013655060)
Davey J, Turner RM, Clarke MJ, Higgins JP (2011) Characteristics of meta-analyses and their component studies in the Cochrane Database of Systematic Reviews: a cross-sectional, descriptive analysis. BMC Med Res Methodol 11:160. https://doi.org/10.1186/1471-2288-11-160. (PMID: 10.1186/1471-2288-11-160221149823247075)
Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M, Welch V (2019) Cochrane handbook for systematic reviews of interventions version 6, 2nd edn. Wiley, Chichester. (PMID: 10.1002/9781119536604)
Bradburn MJ, Deeks JJ, Berlin JA, Russell Localio A (2007) Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Stat Med 26(1):53–77. https://doi.org/10.1002/sim.2528. (PMID: 10.1002/sim.252816596572)
Robins J, Breslow N, Greenland S (1986) Estimators of the Mantel-Haenszel variance consistent in both sparse data and large-strata limiting models. Biometrics 42(2):311–323. (PMID: 10.2307/2531052)
Greenland S, Robins JM (1985) Estimation of a common effect parameter from sparse follow-up data. Biometrics 41(1):55–68. (PMID: 10.2307/2530643)
Simmonds MC, Higgins JP (2016) A general framework for the use of logistic regression models in meta-analysis. Stat Methods Med Res 25(6):2858–2877. https://doi.org/10.1177/0962280214534409. (PMID: 10.1177/096228021453440924823642)
Van Houwelingen HC, Zwinderman KH, Stijnen T (1993) A bivariate approach to meta-analysis. Stat Med 12(24):2273–2284. https://doi.org/10.1002/sim.4780122405. (PMID: 10.1002/sim.47801224057907813)
Jackson D, Law M, Stijnen T, Viechtbauer W, White IR (2018) A comparison of seven random-effects models for meta-analyses that estimate the summary odds ratio. Stat Med 37(7):1059–1085. https://doi.org/10.1002/sim.7588. (PMID: 10.1002/sim.7588293157335841569)
Higgins JP, Thompson SG, Spiegelhalter DJ (2009) A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc 172(1):137–159. https://doi.org/10.1111/j.1467-985X.2008.00552.x. (PMID: 10.1111/j.1467-985X.2008.00552.x193813302667312)
Luce BR, Claxton K (1999) Redefining the analytical approach to pharmacoeconomics. Health Econ 8(3):187–189. https://doi.org/10.1002/(SICI)1099-1050(199905)8:3<187::AID-HEC434>3.3.CO;2-D. (PMID: 10.1002/(SICI)1099-1050(199905)8:3<187::AID-HEC434>3.3.CO;2-D10348413)
Spiegelhalter DJ, Abrams KR, Myles JP (2004) Bayesian approaches to clinical trials and health-care evaluation. Wiley, Chichester. vol. Book, Whole.
Sutton AJ, Abrams KR (2001) Bayesian methods in meta-analysis and evidence synthesis. Stat Methods Med Res 10(4):277–303. https://doi.org/10.1177/096228020101000404. (PMID: 10.1177/09622802010100040411491414)
Goodman S (1999) Toward evidence-based medical statistics. 1: The P value fallacy. Ann Intern Med 130(12):995. (PMID: 10.7326/0003-4819-130-12-199906150-00008)
Turner RM, Jackson D, Wei Y, Thompson SG, Higgins JP (2015) Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis. Stat Med 34(6):984–998. https://doi.org/10.1002/sim.6381. (PMID: 10.1002/sim.638125475839)
Contributed Indexing:
Keywords: Bayesian statistics; Fixed-effect; Heterogeneity; Inverse-variance; Meta-analysis; Random-effects
Entry Date(s):
Date Created: 20210922 Date Completed: 20220107 Latest Revision: 20220107
Update Code:
20240105
DOI:
10.1007/978-1-0716-1566-9_3
PMID:
34550583
Czasopismo naukowe
Deciding whether to use a fixed-effect model or a random-effects model is a primary decision an analyst must make when combining the results from multiple studies through meta-analysis. Both modeling approaches estimate a single effect size of interest. The fixed-effect meta-analysis assumes that all studies share a single common effect and, as a result, all of the variance in observed effect sizes is attributable to sampling error. The random-effects meta-analysis estimates the mean of a distribution of effects, thus assuming that study effect sizes vary from one study to the next. Under this model, variance in observed effect sizes is attributable to both sampling error (within-study variance) and statistical heterogeneity (between-study variance).The most popular meta-analyses involve using a weighted average to combine the study-level effect sizes. Both fixed- and random-effects models use an inverse-variance weight (variance of the observed effect size). However, given the shared between-study variance used in the random-effects model, it leads to a more balanced distribution of weights than under the fixed-effect model (i.e., small studies are given more relative weight and large studies less). The standard error for these estimators also relates to the inverse-variance weights. As such, the standard errors and confidence intervals for the random-effects model are larger and wider than in the fixed-effect analysis. Indeed, in the presence of statistical heterogeneity, fixed-effect models can lead to overly narrow intervals.In addition to commonly used, generalizable models, there are additional fixed-effect models and random-effect models that can be considered. Additional fixed-effect models that are specific to dichotomous data are more robust to issues that arise from sparse data. Furthermore, random-effects models can be expanded upon using generalized linear mixed models so that different covariance structures are used to distribute statistical heterogeneity across multiple parameters. Finally, both fixed- and random-effects modeling can be conducted using a Bayesian framework.
(© 2022. Springer Science+Business Media, LLC, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies