Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Shotgun scanning glycomutagenesis: A simple and efficient strategy for constructing and characterizing neoglycoproteins.

Tytuł:
Shotgun scanning glycomutagenesis: A simple and efficient strategy for constructing and characterizing neoglycoproteins.
Autorzy:
Li M; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853.
Zheng X; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853.
Shanker S; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218.
Jaroentomeechai T; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853.
Moeller TD; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853.
Hulbert SW; Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853.
Koçer I; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853.
Byrne J; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853.
Cox EC; Biomedical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
Fu Q; Cornell Institute of Biotechnology, Cornell University, Ithaca, NY 14853.
Zhang S; Cornell Institute of Biotechnology, Cornell University, Ithaca, NY 14853.
Labonte JW; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218.; Department of Chemistry, Franklin & Marshall College, Lancaster, PA 17604.
Gray JJ; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218; .
DeLisa MP; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853; .; Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853.; Biomedical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.; Cornell Institute of Biotechnology, Cornell University, Ithaca, NY 14853.
Źródło:
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2021 Sep 28; Vol. 118 (39).
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: Washington, DC : National Academy of Sciences
MeSH Terms:
Protein Processing, Post-Translational*
Asparagine/*chemistry
Carrier Proteins/*metabolism
Escherichia coli Proteins/*metabolism
Glycoproteins/*metabolism
Polysaccharides/*metabolism
Ribonuclease, Pancreatic/*metabolism
Single-Chain Antibodies/*metabolism
Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry ; Carrier Proteins/genetics ; Cattle ; Escherichia coli Proteins/chemistry ; Escherichia coli Proteins/genetics ; Glycoproteins/chemistry ; Glycoproteins/genetics ; Glycosylation ; Humans ; Polysaccharides/chemistry ; Polysaccharides/genetics ; Protein Conformation ; Protein Engineering ; Receptor, ErbB-2/antagonists & inhibitors ; Receptor, ErbB-2/immunology ; Ribonuclease, Pancreatic/chemistry ; Ribonuclease, Pancreatic/genetics ; Single-Chain Antibodies/chemistry ; Single-Chain Antibodies/genetics
References:
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3131-6. (PMID: 19204290)
Curr Opin Chem Biol. 2018 Oct;46:130-137. (PMID: 30144649)
Nat Biotechnol. 2006 Jan;24(1):100-4. (PMID: 16369539)
Biochemistry. 1997 Feb 25;36(8):2166-72. (PMID: 9047316)
Proc Natl Acad Sci U S A. 1993 May 1;90(9):4246-50. (PMID: 8483940)
Sci Rep. 2011 Sep 13;1:. (PMID: 22034591)
J Biol Chem. 1987 Aug 5;262(22):10624-9. (PMID: 3611084)
Nat Chem Biol. 2020 Oct;16(10):1062-1070. (PMID: 32719555)
Nat Chem Biol. 2012 Mar 25;8(5):434-6. (PMID: 22446837)
Curr Opin Chem Biol. 2001 Jun;5(3):302-7. (PMID: 11479122)
Curr Opin Biotechnol. 2019 Dec;60:17-28. (PMID: 30554064)
Chem Soc Rev. 2018 Dec 10;47(24):9015-9025. (PMID: 30277489)
J Am Chem Soc. 2004 Jul 14;126(27):8421-5. (PMID: 15237998)
Curr Opin Struct Biol. 2008 Oct;18(5):544-50. (PMID: 18694827)
Glycobiology. 2006 Aug;16(8):113R-136R. (PMID: 16675547)
Appl Environ Microbiol. 2011 Feb;77(3):871-81. (PMID: 21131519)
Nat Chem Biol. 2010 Apr;6(4):264-6. (PMID: 20190762)
J Mol Biol. 2007 Feb 23;366(3):1001-15. (PMID: 17188712)
J Biol Chem. 2016 Oct 14;291(42):22001-22010. (PMID: 27573243)
Science. 2002 Nov 29;298(5599):1790-3. (PMID: 12459590)
Annu Rev Biochem. 2019 Jun 20;88:433-459. (PMID: 30917003)
Nat Chem Biol. 2014 Oct;10(10):816-22. (PMID: 25129029)
Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22528-33. (PMID: 21148421)
mBio. 2011 Feb 08;2(1):e00345-10. (PMID: 21304166)
Biochem J. 1998 Jul 1;333 ( Pt 1):183-91. (PMID: 9639578)
Biotechnol J. 2013 Dec;8(12):1445-51. (PMID: 23894044)
Cell. 2009 Jan 23;136(2):272-83. (PMID: 19167329)
Anal Biochem. 2006 Oct 15;357(2):289-98. (PMID: 16962548)
FEBS Lett. 1996 Nov 25;398(1):57-60. (PMID: 8946953)
Angew Chem Int Ed Engl. 2005 Dec 1;44(45):7342-72. (PMID: 16267872)
Glycobiology. 2004 Feb;14(2):103-14. (PMID: 14514716)
Nat Chem Biol. 2009 Apr;5(4):206-15. (PMID: 19295526)
Curr Opin Biotechnol. 2012 Jun;23(3):338-45. (PMID: 22186222)
Methods Enzymol. 2013;523:369-88. (PMID: 23422439)
Nat Chem Biol. 2018 Jun;14(6):627-635. (PMID: 29736039)
Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):1901-1906. (PMID: 29432186)
Nat Commun. 2019 Nov 27;10(1):5404. (PMID: 31776339)
Protein Eng Des Sel. 2006 May;19(5):231-44. (PMID: 16549402)
Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8256-61. (PMID: 18550810)
J Am Chem Soc. 2009 Mar 25;131(11):3794-5. (PMID: 19292479)
Front Immunol. 2018 Apr 12;9:740. (PMID: 29706962)
Nat Biotechnol. 2013 Nov;31(11):1047-52. (PMID: 24097413)
Trends Biochem Sci. 2006 Mar;31(3):156-63. (PMID: 16473013)
Endocrinology. 2010 Nov;151(11):5326-36. (PMID: 20826563)
Chem Commun (Camb). 2010 Jan 7;46(1):21-43. (PMID: 20024291)
J Immunol. 2016 Feb 15;196(4):1435-41. (PMID: 26851295)
Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8950-4. (PMID: 10908667)
Nat Biotechnol. 2003 Apr;21(4):414-21. (PMID: 12612588)
Anal Chem. 2020 Jan 21;92(2):1963-1971. (PMID: 31854989)
J Biol Chem. 1987 Nov 25;262(33):16020-31. (PMID: 3680242)
Mol Pharm. 2013 Jul 1;10(7):2616-29. (PMID: 23668542)
J Biol Chem. 2002 Jul 26;277(30):26733-40. (PMID: 11986321)
Biochemistry. 2007 May 8;46(18):5579-85. (PMID: 17439157)
Metab Eng. 2019 May;53:59-68. (PMID: 30772453)
Science. 2006 Nov 17;314(5802):1148-50. (PMID: 17110579)
Structure. 1999 Jan 15;7(1):91-102. (PMID: 10368275)
Biochemistry. 1994 Jan 11;33(1):17-22. (PMID: 8286336)
Biochimie. 2008 Mar;90(3):437-49. (PMID: 18039474)
Nat Commun. 2018 Jul 12;9(1):2686. (PMID: 30002445)
Glycobiology. 2017 Jan;27(1):3-49. (PMID: 27558841)
Grant Information:
R01 GM127578 United States GM NIGMS NIH HHS; R01 GM137314 United States GM NIGMS NIH HHS; U54 CA210184 United States CA NCI NIH HHS; T32 EB023860 United States EB NIBIB NIH HHS; S10 OD017992 United States OD NIH HHS
Contributed Indexing:
Keywords: glycoengineering; glycosylation; protein design and engineering; synthetic biology
Substance Nomenclature:
0 (Carrier Proteins)
0 (E colicin-binding immunity protein Im7, E coli)
0 (Escherichia coli Proteins)
0 (Glycoproteins)
0 (Polysaccharides)
0 (Single-Chain Antibodies)
7006-34-0 (Asparagine)
EC 2.7.10.1 (ERBB2 protein, human)
EC 2.7.10.1 (Receptor, ErbB-2)
EC 3.1.27.5 (Ribonuclease, Pancreatic)
Entry Date(s):
Date Created: 20210923 Date Completed: 20211004 Latest Revision: 20211027
Update Code:
20240105
PubMed Central ID:
PMC8488656
DOI:
10.1073/pnas.2107440118
PMID:
34551980
Czasopismo naukowe
As a common protein modification, asparagine-linked ( N- linked) glycosylation has the capacity to greatly influence the biological and biophysical properties of proteins. However, the routine use of glycosylation as a strategy for engineering proteins with advantageous properties is limited by our inability to construct and screen large collections of glycoproteins for cataloguing the consequences of glycan installation. To address this challenge, we describe a combinatorial strategy termed shotgun scanning glycomutagenesis in which DNA libraries encoding all possible glycosylation site variants of a given protein are constructed and subsequently expressed in glycosylation-competent bacteria, thereby enabling rapid determination of glycosylatable sites in the protein. The resulting neoglycoproteins can be readily subjected to available high-throughput assays, making it possible to systematically investigate the structural and functional consequences of glycan conjugation along a protein backbone. The utility of this approach was demonstrated with three different acceptor proteins, namely bacterial immunity protein Im7, bovine pancreatic ribonuclease A, and human anti-HER2 single-chain Fv antibody, all of which were found to tolerate N- glycan attachment at a large number of positions and with relatively high efficiency. The stability and activity of many glycovariants was measurably altered by N- linked glycans in a manner that critically depended on the precise location of the modification. Structural models suggested that affinity was improved by creating novel interfacial contacts with a glycan at the periphery of a protein-protein interface. Importantly, we anticipate that our glycomutagenesis workflow should provide access to unexplored regions of glycoprotein structural space and to custom-made neoglycoproteins with desirable properties.
Competing Interests: Competing interest statement: M.P.D. has a financial interest in Glycobia, Inc., SwiftScale Biologics, Inc., and Versatope Therapeutics, Inc. M.P.D.’s interests are reviewed and managed by Cornell University in accordance with their conflict of interest policies. J.J.G. is an unpaid board member of the Rosetta Commons. Under institutional participation agreements between the University of Washington, acting on behalf of the Rosetta Commons, Johns Hopkins University may be entitled to a portion of revenue received on licensing Rosetta software including some methods developed in this article. As a member of the Scientific Advisory Board, J.J.G. has a financial interest in Cyrus Biotechnology. Cyrus Biotechnology distributes the Rosetta software, which may include methods mentioned in this article. J.J.G.’s arrangements have been reviewed and approved by the Johns Hopkins University in accordance with its conflict-of-interest policies.
(Copyright © 2021 the Author(s). Published by PNAS.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies