Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Target-specific control of piriform cortical output via distinct inhibitory circuits.

Tytuł:
Target-specific control of piriform cortical output via distinct inhibitory circuits.
Autorzy:
Jiang HH; Department of Neuroscience, City University of Hong Kong, Hong Kong, China.; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
Guo A; Department of Neuroscience, City University of Hong Kong, Hong Kong, China.; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
Chiu A; Department of Neuroscience, City University of Hong Kong, Hong Kong, China.; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
Li H; Department of Neuroscience, City University of Hong Kong, Hong Kong, China.; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
Lai CSW; School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
Lau CG; Department of Neuroscience, City University of Hong Kong, Hong Kong, China.; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
Źródło:
FASEB journal : official publication of the Federation of American Societies for Experimental Biology [FASEB J] 2021 Oct; Vol. 35 (10), pp. e21944.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 2020- : [Bethesda, Md.] : Hoboken, NJ : Federation of American Societies for Experimental Biology ; Wiley
Original Publication: [Bethesda, Md.] : The Federation, [c1987-
MeSH Terms:
Neural Inhibition*
Neural Pathways*
Piriform Cortex/*cytology
Piriform Cortex/*metabolism
Animals ; Female ; Interneurons/metabolism ; Male ; Mice ; Nose ; Odorants/analysis ; Olfactory Perception/physiology ; Parvalbumins/metabolism ; Smell/physiology ; Somatostatin ; Synaptic Transmission
References:
Wilson DA, Sullivan RM. Cortical processing of odor objects. Neuron. 2011;72:506-519.
Roland B, Deneux T, Franks KM, Bathellier B, Fleischmann A. Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex. eLife. 2017;6:e26337.
Bolding KA, Franks KM. Recurrent cortical circuits implement concentration-invariant odor coding. Science. 2018;361(6407):eaat6904.
Penker S, Licht T, Hofer KT, Rokni D. Mixture coding and segmentation in the anterior piriform cortex. Front Syst Neurosci. 2020;14:604718.
Poo C, Isaacson JS. An early critical period for long-term plasticity and structural modification of sensory synapses in olfactory cortex. J Neurosci. 2007;27:7553-7558.
Franks KM, Russo MJ, Sosulski DL, Mulligan AA, Siegelbaum SA, Axel R. Recurrent circuitry dynamically shapes the activation of piriform cortex. Neuron. 2011;72:49-56.
Choi GB, Stettler DD, Kallman BR, Bhaskar ST, Fleischmann A, Axel R. Driving opposing behaviors with ensembles of piriform neurons. Cell. 2011;146:1004-1015.
Jung MW, Larson J, Lynch G. Long-term potentiation of monosynaptic EPSPs in rat piriform cortex in vitro. Synapse. 1990;6:279-283.
Kanter ED, Haberly LB. NMDA-dependent induction of long-term potentiation in afferent and association fiber systems of piriform cortex in vitro. Brain Res. 1990;525:175-179.
Haberly LB. Parallel-distributed processing in olfactory cortex: new insights from morphological and physiological analysis of neuronal circuitry. Chem Senses. 2001;26:551-576.
Best AR, Wilson DA. A postnatal sensitive period for plasticity of cortical afferents but not cortical association fibers in rat piriform cortex. Brain Res. 2003;961:81-87.
Meissner-Bernard C, Dembitskaya Y, Venance L, Fleischmann A. Encoding of odor fear memories in the mouse olfactory cortex. Curr Biol. 2019;29:367-380.e4.
Suzuki N, Bekkers JM. Two layers of synaptic processing by principal neurons in piriform cortex. J Neurosci. 2011;31:2156-2166.
Wiegand HF, Beed P, Bendels MHK, Leibold C, Schmitz D, Johenning FW. Complementary sensory and associative microcircuitry in primary olfactory cortex. J Neurosci. 2011;31:12149-12158.
Diodato A, Ruinart de Brimont M, Yim YS, et al. Molecular signatures of neural connectivity in the olfactory cortex. Nat Commun. 2016;7:12238.
Padmanabhan K, Osakada F, Tarabrina A, et al. Diverse representations of olfactory information in centrifugal feedback projections. J Neurosci. 2016;36:7535-7545.
Mazo C, Grimaud J, Shima Y, Murthy VN, Lau CG. Distinct projection patterns of different classes of layer 2 principal neurons in the olfactory cortex. Sci Rep. 2017;7:8282.
Boyd AM, Sturgill JF, Poo C, Isaacson JS. Cortical feedback control of olfactory bulb circuits. Neuron. 2012;76:1161-1174.
Otazu GH, Chae H, Davis MB, Albeanu DF. Cortical feedback decorrelates olfactory bulb output in awake mice. Neuron. 2015;86:1461-1477.
Yang J, Litscher G, Sun Z, et al. Quantitative analysis of axon collaterals of single pyramidal cells of the anterior piriform cortex of the guinea pig. BMC Neurosci. 2017;18:25.
Large AM, Vogler NW, Mielo S, Oswald A-MM. Balanced feedforward inhibition and dominant recurrent inhibition in olfactory cortex. Proc Natl Acad Sci U S A. 2016;113:2276-2281.
Tantirigama MLS, Huang HH-Y, Bekkers JM. Spontaneous activity in the piriform cortex extends the dynamic range of cortical odor coding. Proc Natl Acad Sci U S A. 2017;114:2407-2412.
Hippenmeyer S, Vrieseling E, Sigrist M, et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 2005;3:e159.
Luna VM, Pettit DL. Asymmetric rostro-caudal inhibition in the primary olfactory cortex. Nat Neurosci. 2010;13:533-535.
Sugai T, Miyazawa T, Fukuda M, Yoshimura H, Onoda N. Odor-concentration coding in the guinea-pig piriform cortex. Neuroscience. 2005;130:769-781.
Jonas P, Sakmann B. Glutamate receptor channels in isolated patches from CA1 and CA3 pyramidal cells of rat hippocampal slices. J Physiol. 1992;455:143-171.
Tan AYY, Zhang LI, Merzenich MM, Schreiner CE. Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. J Neurophysiol. 2004;92:630-643.
Choy JMC, Suzuki N, Shima Y, Budisantoso T, Nelson SB, Bekkers JM. Optogenetic mapping of intracortical circuits originating from semilunar cells in the piriform cortex. Cereb Cortex. 2017;27:589-601.
Suzuki N, Bekkers JM. Distinctive classes of GABAergic interneurons provide layer-specific phasic inhibition in the anterior piriform cortex. Cereb Cortex. 2010;20:2971-2984.
Hu H, Gan J, Jonas P. Interneurons. Fast-spiking, parvalbumin+ GABAergic interneurons: from cellular design to microcircuit function. Science. 2014;345:1255263.
Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P. Ultrafast optogenetic control. Nat Neurosci. 2010;13:387-392.
Suzuki N, Bekkers JM. Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers. J Comp Neurol. 2010;518:1670-1687.
Large AM, Kunz NA, Mielo SL, Oswald A-MM. Inhibition by somatostatin interneurons in olfactory cortex. Front Neural Circuits. 2016;10:62.
Large AM, Vogler NW, Canto-Bustos M, Friason FK, Schick P, Oswald A-MM. Differential inhibition of pyramidal cells and inhibitory interneurons along the rostrocaudal axis of anterior piriform cortex. Proc Natl Acad Sci U S A. 2018;115:E8067-E8076.
Cohen Y, Wilson DA, Barkai E. Differential modifications of synaptic weights during odor rule learning: dynamics of interaction between the piriform cortex with lower and higher brain areas. Cereb Cortex. 2015;25:180-191.
Freund TF, Katona I. Perisomatic inhibition. Neuron. 2007;56:33-42.
Stokes CCA, Isaacson JS. From dendrite to soma: dynamic routing of inhibition by complementary interneuron microcircuits in olfactory cortex. Neuron. 2010;67:452-465.
Froemke RC. Plasticity of cortical excitatory-inhibitory balance. Annu Rev Neurosci. 2015;38:195-219.
Reuveni I, Lin L, Barkai E. Complex-learning induced modifications in synaptic inhibition: mechanisms and functional significance. Neuroscience. 2018;381:105-114.
Lee S-H, Marchionni I, Bezaire M, et al. Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells. Neuron. 2014;82:1129-1144.
Contributed Indexing:
Keywords: GABAergic interneurons; inhibitory connectivity; inhibitory plasticity; sensory experience
Substance Nomenclature:
0 (Parvalbumins)
51110-01-1 (Somatostatin)
Entry Date(s):
Date Created: 20210927 Date Completed: 20211027 Latest Revision: 20211027
Update Code:
20240105
DOI:
10.1096/fj.202100757R
PMID:
34569087
Czasopismo naukowe
Information represented by principal neurons in anterior piriform cortex (APC) is regulated by local, recurrent excitation and inhibition, but the circuit mechanisms remain elusive. Two types of layer 2 (L2) principal neurons, semilunar (SL), and superficial pyramidal (SP) cells, are parallel output channels, and the control of their activity gates the output of APC. Here, we examined the hypothesis that recurrent inhibition differentially regulates SL and SP cells. Patterned optogenetic stimulation revealed that the strength of recurrent inhibition is target- and layer-specific: L1 > L3 for SL cells, but L3 > L1 for SP cells. This target- and layer-specific inhibition was largely attributable to the parvalbumin (PV), but not somatostatin, interneurons. Intriguingly, olfactory experience selectively modulated the PV to SP microcircuit while maintaining the overall target and laminar specificity of inhibition. Together, these results indicate the importance of target-specific inhibitory wiring for odor processing, implicating these mechanisms in gating the output of piriform cortex.
(© 2021 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies