Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Intravenous injection of mesenchymal stem cell spheroids improves the pulmonary delivery and prolongs in vivo survival.

Tytuł:
Intravenous injection of mesenchymal stem cell spheroids improves the pulmonary delivery and prolongs in vivo survival.
Autorzy:
Shimazawa Y; Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Kusamori K; Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Tsujimura M; Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Shimomura A; Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Takasaki R; Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Takayama Y; Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Shimizu K; Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan.
Konishi S; Department of Mechanical Engineering, Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan.
Nishikawa M; Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Źródło:
Biotechnology journal [Biotechnol J] 2022 Jan; Vol. 17 (1), pp. e2100137. Date of Electronic Publication: 2021 Oct 08.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Weinheim : Wiley-VCH Verlag, c2006-
MeSH Terms:
Mesenchymal Stem Cell Transplantation*
Mesenchymal Stem Cells*
Adipose Tissue ; Animals ; Injections, Intravenous ; Lung ; Mice ; Spheroids, Cellular
References:
Voswinkel, J., Francois, S., Simon, J. M., Benderitter, M., Gorin, N. C., Mohty, M., Fouillard, L., & Chapel, A. (2013). Use of mesenchymal stem cells (MSC) in chronic inflammatory fistulizing and fibrotic diseases: A comprehensive review. Clinical Reviews in Allergy and Immunology 45, 180-192.
Fekete, N., Rojewski, M. T., Fürst, D., Kreja, L., Ignatius, A., Dausend, J., & Schrezenmeier, H. (2012). GMP-compliant isolation and large-scale expansion of bone marrow-derived MSC. Plos One 7, e43255.
Hass, R., Kasper, C., Bohm, S., & Jacobs, R. (2011). Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. The Journal of Cell Communication and Signaling 9(12), 1-14.
Muroi, K., Miyamura, K., Okada, M., Yamashita, T., Murata, M., Ishikawa, T., Uike, N., Hidaka, M., Kobayashi, R., Imamura, M., Tanaka, J., Ohashi, K., Taniguchi, S., Ikeda, T., Eto, T., Mori, M., Yamaoka, M., & Ozawa, K. (2016). Bone marrow-derived mesenchymal stem cells (JR-031) for steroid-refractory grade III or IV acute graft-versus-host disease: A phase II/III study. International Journal of Hematology 103, 243-250.
Tyndall, A., & Houssiau, A. (2010). Mesenchymal stem cells in the treatment of autoimmune diseases. Annals of the Rheumatic Diseases 69, 1413-1414.
Inamdar, A. C., & Inamdar, A. A. (2013). Mesenchymal stem cell therapy in lung disorders: Pathogenesis of lung diseases and mechanism of action of mesenchymal stem cell. Experimental Lung Research 39, 315-327.
Li, L., Chen, X., Wang, W. E., Zeng, C. (2016). How to improve the survival of transplanted mesenchymal stem cell in ischemic heart?. Stem Cells International 2016, 9682757.
Kusamori, K., Nishikawa, M., Mizuno, N., Nishikawa, T., Masuzawa, A., Tanaka, Y., Mizukami, Y., Shimizu, K., Konishi, S., Takahashi, Y., & Takakura, Y. (2016). Increased insulin secretion from insulin-secreting cells by construction of mixed multicellular spheroids. Pharmaceutical Research 33, 247-256.
Kim, H., Phung, Y., & Ho, M. (2012). Changes in global gene expression associated with 3d structure of tumors: An ex vivo matrix-free mesothelioma spheroid model. Plos One, 7, e39556.
Bartosh, T. J., Ylostalo, J. H., Mohammadipoor, A., Bazhanov, N., Coble, K., Claypool, K., Lee, R. H., Choi, H., & Prockop, D. J. (2010). Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proceedings of the National Academy of Sciences of the United States of America 107, 13724-13729.
Kusamori, K., Nishikawa, M., Mizuno, N., Nishikawa, T., Masuzawa, A., Shimizu, K., Konishi, S., Takahashi, Y., & Takakura, Y. (2014). Transplantation of insulin-secreting multicellular spheroids for the treatment of type 1 diabetes in mice. Journal of Controlled Release 173, 119-124.
Nishikawa, T., Tanaka, Y., Nishikawa, M., Ogino, Y., Kusamori, K., Mizuno, N., Mizukami, Y., Shimizu, K., Konishi, S., Takahashi, Y., & Takakura, Y. (2017). Optimization of albumin secretion and metabolic activity of cytochrome p450 1a1 of human hepatoblastoma hepg2 cells in multicellular spheroids by controlling spheroid size. Biological and Pharmaceutical Bulletin 40, 334-338.
Tanaka, Y., Nishikawa, M., Mizukami, Y., Kusamori, K., Ogino, Y., Nishimura, S., Shimizu, K., Konishi, S., Takahashi, Y., & Takakura, Y. (2018). Control of polarization and tumoricidal activity of macrophages by multicellular spheroid formation. Journal of Controlled Release 28, 177-183.
Nishikawa, T., Tanaka, Y., Kusamori, K., Mizuno, N., Mizukami, Y., Ogino, Y., Shimizu, K., Konishi, S., Takahashi, Y., Takakura, Y., & Nishikawa, M. (2017). Using size-controlled multicellular spheroids of murine adenocarcinoma cells to efficiently. Biotechnology Journal 12(8), 1-11.
Shimizu, K., Kusamori, K., Nishikawa, M., Mizuno, N., Nishikawa, T., Masuzawa, A., Katano, S., Takahashi, Y., Takakura, Y., & Konishi, S. (2013). Poly(N-isopropylacrylamide)-coated microwell arrays for construction and recovery of multicellular spheroids. Journal of Bioscience & Bioengineering 115, 695-699.
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (San Diego, Caliornia.) 25, 402-408.
Tsujimura, M., Kusamori, K., Oda, C., Miyazaki, A., Katsumi, H., Sakane, T., Nishikawa, M., & Yamamoto, A. (2018). Regulation of proliferation and functioning of transplanted cells by using herpes simplex virus thymidine kinase gene in mice. Journal of Controlled Release 10, 78-84.
Braza, F., Dirou, S., Forest, V., Sauzeau, V.., Hassoun, D., Chesné, J., Cheminant-Muller, M. A., Sagan, C., Magnan, A., & Lemarchand, P. (2016). Mesenchymal stem cells induce suppressive macrophages through phagocytosis in a mouse model of asthma. Stem Cells 34, 1836-1845.
Hoefner, C., Muhr, C., Horder, H., Wiesner, M., Wittmann, K., Lukaszyk, D., Radeloff, K., Winnefeld, M., Becker, M., Blunk, T., & Bauer-Kreisel, P. (2020). Human adipose-derived mesenchymal stromal/stem cell spheroids possess high adipogenic capacity and acquire an adipose tissue-like extracellular matrix pattern. Tissue Engineering - Part A 26, 915-926.
Tummy, T. C., & Hughes-Fulfold, M. (2009). Monolayer and spheroid culture of human liver hepatocellular carcinoma cell line cells demonstrate distinct global gene expression patterns and functional phenotypes. Tissue Engineering - Part A 15, 559-567.
Ernst, A., Hofmann, S., Ahmadi, R., Becker, N., Korshunov, A., Engel, F., Hartmann, C., Felsberg, J., Sabel, M., Peterziel, H., Durchdewald, M., Hess, J., Barbus, S., Campos, B., Starzinski-Powitz, A., Unterberg, A., Reifenberger, G., Lichter, P., Herold-Mende, C., & Radlwimmer, B. (2009). Genomic and expression profiling of glioblastoma stem cell-like spheroid cultures identifies novel tumor-relevant genes associated with survival. Clinical Cancer Research 15, 6541-6450.
Ramaiahgari, S. C., Braver, M. W., Herpers, B., Terpstra, V., Commandeur, J. N. M., van de Water, B., & Price, L. S. (2014). A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Archives of Toxicology 88, 1083-1095.
Lee, L. H., Han, Y. S., & Lee, S. H. (2016). Long-duration three-dimensional spheroid culture promotes angiogenic activities of adipose-derived mesenchymal stem cells. Biomolecules and Therapeutics 24, 260-267.
Zhang, F., Wang, H., Wang, X., Jiang, G., Liu, H., Zhang, G., Wang, H., Fang, R., Bu, X., Cai, S., & Du, J. (2016). TGF-Î2 induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 7, 52294-52306.
Schrepfer, S., Deuse, T., Reichenspurner, H., Fischbein, M. P., Robbins, R. C., & Pelletier, M. P. (2007). Stem cell transplantation: The lung barrier. Transplantation Proceedings 39, 573-576.
Schäfer, R., Schwab, M., Siegel, G., von Ameln-Mayerhofer, A., Buadze, M., Lourhmati, A., Wendel, H., Kluba, T., Krueger, M. A., Calaminus, C., Scheer, E., Dominici, M., Grisendi, G., Doeppner, T. R., Schlechter, J., Finzel, A. K., Gross, D., Klaffschenkel, R., Gehring, F. K., Spohn, G., Kretschmer, A., Bieback, K., Krämer-Albers, E., Barth, K., Eckert, A., Elser, S., Schmehl, J., Claussen, C. D., Seifried, E., Hermann, D. M., Northoff, H., & Danielyan, L. (2020). Modulating endothelial adhesion and migration impacts stem cell therapies efficacy. EBioMedicine 60, 102987.
Steingen, C., Brenig, F., Baumgartner, L., Schmidt, J., Schmidt, A., & Bloch, W. (2008). Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells. The Journal of Molecular and Cellular Cardiology 44, 1072-1084.
Remick, D. G., Newcomb, D. E., Bolgos, G. L., & Call, D. R. (2000). Comparison of the mortality and inflammatory response of two models of sepsis: Lipopolysaccharide vs. cecal ligation and puncture. Shock 13, 110-116.
Xu, J., Woods, C. R., Mora, A. L., Joodi, R., Brigham, K. L., Iyer, S., & Rojas, M. (2007). bPrevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology 293, 131-141.
Li, J., Li, D., Liu, X., Tang, S., & Wei, F. (2012). Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats. Journal of Inflammation 9(33), 1-11.
Grant Information:
2017 GSK Japan Research
Contributed Indexing:
Keywords: biodistribution; cell transplantation; mesenchymal stem cells; micromolding technique; multicellular spheroids
Entry Date(s):
Date Created: 20210928 Date Completed: 20220118 Latest Revision: 20220118
Update Code:
20240105
DOI:
10.1002/biot.202100137
PMID:
34581003
Czasopismo naukowe
Background: Because of the excellent therapeutic potential, mesenchymal stem cells (MSCs) have been used as cell therapeutics for various diseases. However, the survival rate and duration of MSCs after transplantation are extremely low and short, respectively. To solve these problems, in this study, we prepared multicellular spheroids of MSCs and investigated their survival and function after intravenous injection in mice.
Methods and Results: The murine adipose-derived MSC line m17.ASC was cultured in agarose-based microwell plates to obtain size-controlled m17.ASC spheroids of an average diameter and cell number of approximately 170 μm and 1100 cells/spheroid, respectively. The intravenously injected m17.ASC spheroids mainly accumulated in the lung and showed a higher survival rate than suspended m17.ASC cells during the experimental period of 7 days. m17.ASC spheroids efficiently reduced the lipopolysaccharide-induced increase in plasma concentrations of interleukin-6 and tumor necrosis factor-α.
Conclusions: These results indicate that spheroid formation improved the pulmonary delivery and survival of MSCs, as well as their therapeutic potential against inflammatory pulmonary diseases.
(© 2021 Wiley-VCH GmbH.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies