Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Toward a More General Understanding of Bohr's Complementarity: Insights from Modeling of Ion Channels.

Tytuł:
Toward a More General Understanding of Bohr's Complementarity: Insights from Modeling of Ion Channels.
Autorzy:
Kesić S; Department of Neurophysiology, Institute for Biological Research 'Siniša Stanković'-National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd., 142, 11060, Belgrade, Serbia. .
Źródło:
Acta biotheoretica [Acta Biotheor] 2021 Dec; Vol. 69 (4), pp. 723-744. Date of Electronic Publication: 2021 Sep 28.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2005- : Dordrecht : Springer
Original Publication: Leyden, Brill.
MeSH Terms:
Ion Channels*
References:
Alrøe HF, Noe E (2016) Sustainability assessment and complementarity. Ecol Soc 21(1):30.
Austin TD (2008) The emergence of the deterministic Hodgkin–Huxley equations as a limit from the underlying stochastic ion-channel mechanism. Ann Appl Prob 18(4):1279–1325.
Benarroch EE (2013) HCN channels: function and clinical implications. Neurology 80(3):304–310.
Bohr N (1928) The quantum postulate and the recent development of atomic theory. Nature 21:580–590.
Bohr N (1937) Causality and complementarity. Philos Sci 4:289–298.
Brody N, Oppenheim P (1969) Application of Bohr’s principle of complementarity to the mind-body problem. J Philos 66(4):97–113.
Bruggeman FJ, Hornberg JJ, Boogerd FC, Westerhoff HV (2007) Introduction to systems biology. In: Baginsky S, Dernie AR (eds) Plant systems biology. Birkhäuser Verlag, Basel.
Bunge M (1955a) Strife about complementarity (I). Br J Philos Sci 6(21):1–12.
Bunge M (1955b) Strife about complementarity (II). Br J Philos Sci 6(22):141–154.
Burke KJ, Bender KJ (2019) Modulation of ion channels in the axon: mechanisms and function. Front Cell Neurosci 13:221.
Camilleri K (2007) Bohr, Heisenberg, and the divergent views of complementarity. Stud Hist Philos Sci C 38:514–528.
Chu D, Strand R, Fjelland R (2003) Theories of complexity. Complexity 8(3):19–30.
de Melo AT (2020) Performing complexity: building foundations for the practice of complex thinking. Springer International Publishing, New York.
Domondon AT (2006) Bringing physics to bear on the phenomenon of life: the divergent positions of Bohr, Delbrück, and Schrödinger. Stud Hist Philos Sci C 37:433–458.
Doty PJ (1958) Complementarity and its analogies. J Philos 55(25):1089–1104.
Dudman JT, Nolan MF (2009) Stochastically gating ion channels enable patterned spike firing through activity-dependent modulation of spike probability. PLoS Comput Biol 5(2):1000290.
Epstein M, Calderhead B, Girolami MA, Sivilotti LG (2016) Bayesian statistical inference in ion-channel models with exact missed event correction. Biophys J 111(2):333–348.
Faye J (2012) Niels Bohr: his heritage and legacy: an antirealist view of quantum mechanics. Springer Science & Business Media, Berlin.
Fiedler-Ferrara N (2010) The complex thinking: building of a new paradigm. Trans. Clarissa Almeida, Anja Pratschke. In V!RUS. N. 3. São Carlos: Nomads.
Folse HJ (1985) The philosophy of Niels Bohr. Elsevier, Amsterdam.
Fox RF (1997) Stochastic versions of the Hodgkin–Huxley equations. Biophys J 72(5):2068–2074.
Gerstner W, Sprekeler H, Deco G (2012) Theory and simulation in neuroscience. Science 338(6103):60–65.
Goldwyn JH, Shea-Brown E (2011) The what and where of adding channel noise to the Hodgkin–Huxley equations. PLoS Comput Biol 7(11):e1002247.
Goldwyn JH, Imennov NS, Famulare M, Shea-Brown E (2011) Stochastic differential equation models for ion channel noise in Hodgkin–Huxley neurons. Phys Rev E 83(4):041908.
Grinnell F, Bishop JP, McCullough LB (2002) Bioethical pluralism and complementarity. Perspect Biol Med 45:338–349.
Grunbaum A (1957) I. complementarity in quantum physics and its philosophical generalization. J Philos 54(23):713–727.
Guckenheimer J, Oliva RA (2002) Chaos in the Hodgkin–Huxley model. SIAM J Appl Dyn Syst 1(1):105–114.
Herz AV, Gollisch T, Machens CK, Jaeger D (2006) Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314(5796):80–85.
Holton G (1988) The roots of complementarity. Daedalus 117:151–197.
Jedlicka P (2017) Revisiting the quantum brain hypothesis: toward quantum (neuro) biology? Front Mol Neurosci 10:366.
Kavalali ET (2015) The mechanisms and functions of spontaneous neurotransmitter release. Nat Rev Neurosci 16(1):5–16.
Kesić S (2019) Rethinking the pragmatic systems biology and systems-theoretical biology divide: toward a complexity-inspired epistemology of systems biomedicine. Med Hypotheses 131:109316.
Kesić S, Spasić S (2016) Application of Higuchi’s fractal dimension from basic to clinical neurophysiology: a review. Comput Meth Prog Bio 133:55–70.
Kispersky T, White JA (2008) Stochastic models of ion channel gating. Scholarpedia 3(1):1327.
Koch C, Hepp K (2006) Quantum mechanics in the brain. Nature 440(7084):611–611.
Koch C, Schutter ED (1999) Biophysics of computation: information processing in single neurons. Nature 398(6729):678–678.
Körber C, Kuner T (2016) Molecular machines regulating the release probability of synaptic vesicles at the active zone. Front Synaptic Neurosci 8:5.
Linaro D, Giugliano M (2015) Markov models of ion channels. In: Jaeger D, Jung R (eds) Encyclopedia of computational neuroscience. Springer, New York.
Marchionni C (2008) Explanatory pluralism and complementarity: from autonomy to integration. Philos Soc Sci 38:314–333.
Mazzocchi F (2008) Complexity in biology: exceeding the limits of reductionism and determinism using complexity theory. EMBO J 9:10–14.
Mazzocchi F (2010) Complementarity in biology: a reassessment in relation to molecular-reductionist and systemic approaches. EMBO Rep 1:339–344.
Mazzocchi F (2011) The limits of reductionism in biology: what alternatives. E-LOGOS: Electron J Philos 11:1–19.
McKaughan DJ (2005) The influence of Niels Bohr on Max Delbrück: revisiting the hopes inspired by light and life. Isis 96:507–529.
McKaughan DJ (2011) Was Delbrück a reductionist? In: Sloan PR, Fogel BF (eds) Creating physical biology: the three-man paper and early molecular biology. University of Chicago Press, Chicago.
Mendonca PR, Vargas-Caballero M, Erdelyi F, Szabó G, Paulsen O, Robinson HP (2016) Stochastic and deterministic dynamics of intrinsically irregular firing in cortical inhibitory interneurons. eLife 5:e16475.
Milescu LS (2015) A stochastic relationship. Biophys J 108(2):225–227.
Morin E (2014) Complex thinking for a complex world-about reductionism, disjunction, and systemism. Systema 2:14–22.
Noble D (2012) A theory of biological relativity: no privileged level of causation. Interface Focus 2(1):55–64.
O’Donnell C, van Rossum MC (2014) Systematic analysis of stochastic voltage-gated channels’ contributions to neuronal noise. Front Comput Neurosci 8:105.
Pan-Chiu L (2002) Buddhist-Christian complementarity in the perspective of quantum physics. Buddh-Christ Stud 22:149–162.
Park JL (1967) Complementarity without paradox: a physicist’s reply to professor Austin. Zygon® 2(4):382–388.
Pattee HH (1978) The complementarity principle in biological and social structures. J Soc Biol Struct 1(2):191–200.
Penrose R (1994) Shadows of the mind. Oxford University Press, Oxford.
Radder H (2009) The philosophy of scientific experimentation: a review. Autom Exp 1(1):1–8.
Roll-Hansen N (2000) The application of complementarity to biology: from Niels Bohr to Max Delbrück. Hist Stud Nat Sci 30:417–442.
Roll-Hansen N (2011) Niels Bohr and Max Delbrück balancing autonomy and reductionism in biology. In: Sloan PR, Fogel BF (eds) Creating a physical biology: the three-man paper and the origins of molecular biology. University of Chicago Press, Chicago.
Roy S, Llinás R (2009) Relevance of quantum mechanics on some aspects of ion channel function. C R Biol 332(6):517–522.
Rychlak JF (1993) A suggested principle of complementarity for psychology: in theory, not method. Am Psychol 48(9):933.
Saunders S (2005) Complementarity and scientific rationality. Found Phys 35:417–447.
Scott AC (2007) The nonlinear universe: chaos, emergence, life. Springer-Verlag, Berlin.
Shomar T (2008) Bohr as a phenomenological realist. J Gen Philos Sci 39(2):321–349.
Shomar T (2020) Complementarity revisited. Found Sci 25(2):401–424.
Sloan PR (2012) How was teleology eliminated in early molecular biology? Stud Hist Philos Sci C 43:140–151.
Steinmetz PN, Manwani A, Koch C (2001) Variability and coding efficiency of noisy neural spike encoders. Biosystems 62(1–3):87–97.
Tarlaci S, Pregnolato M (2016) Quantum neurophysics: from non-living matter to quantum neurobiology and psychopathology. Int J Psychophysiol 103:161–173.
Theise ND, Kafatos MC (2013) Complementarity in biological systems: a complexity view. Complexity 18:11–20.
Timoféeff-Ressovsky N, Zimmer KG, Delbrück M (1935) Über die natur der genmutation und der genstruktur (about the nature of the gene mutation and the gene structure), Nachrichten der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 6:190–245.
Vol’kensheten MV (1988) Complementarity, physics, and biology. Phys-Uspekhi 31:140–150.
Weber M (2005) Indeterminism in neurobiology. Found Sci 72(5):663–674.
Weston MM, Hall MJ, Palsson MS, Wiseman HM, Pryde GJ (2013) Experimental test of universal complementarity relations. Phys Rev Lett 110(22):220402.
Wong MY, Kaeser PS (2014) Active zone. Encyclopedia of neuroscience. Elsevier, Amsterdam.
Wootters WK, Zurek WH (1979) Complementarity in the double-slit experiment: quantum nonseparability and a quantitative statement of Bohr’s principle. Phys Rev D 19(2):473.
Grant Information:
Contract 451-03-9/2021-14/ 200007. Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Contributed Indexing:
Keywords: Complementarity; Complex thinking; Deterministic model; Ion channels; Realist phenomenology; Stochastic model
Substance Nomenclature:
0 (Ion Channels)
Entry Date(s):
Date Created: 20210929 Date Completed: 20211117 Latest Revision: 20211117
Update Code:
20240105
DOI:
10.1007/s10441-021-09424-0
PMID:
34585309
Czasopismo naukowe
Some contemporary theorists such as Mazzocchi, Theise and Kafatos are convinced that the reformed complementarity may redefine how we might exploit the complexity theory in 21st-century life sciences research. However, the motives behind the profound re-invention of "biological complementarity" need to be substantiated with concrete shreds of evidence about this principle's applicability in real-life science experimentation, which we found missing in the literature. This paper discusses such pieces of evidence by confronting Bohr's complementarity and ion channel modeling practice. We examine whether and to what extent this principle might assist in developing ion channel models incorporating both deterministic and stochastic solutions. According to the "mutual exclusiveness of experimental setups" version of Bohr's complementarity, this principle is needed when two mutually exclusive perspectives or approaches are right, necessary in a particular context, and are not contradictory as they arise in mutually exclusive conditions (mutually exclusive experimental or modeling setups). A detailed examination of the modeling practice reveals that both solutions are often used simultaneously in a single ion channel model, suggesting that the opposite conceptual frameworks can coexist in the same modeling setup. We concluded that Bohr's complementarity might find applications in these complex modeling setups but only through its realistic phenomenological interpretation that allows applying different modes of description regardless of the nature of the underlying ion channel opening process. Also, we propose the combined use of complementarity and Complex thinking in building the multifaceted ion channel models. Overall, this paper's results support the efforts to establish a more general form of complementarity to meet today's complexity theory-inspired life sciences modeling demands.
(© 2021. Springer Nature B.V.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies