Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Dielectric Engineering for Manipulating Exciton Transport in Semiconductor Monolayers.

Tytuł:
Dielectric Engineering for Manipulating Exciton Transport in Semiconductor Monolayers.
Autorzy:
Li Z; Electrical and Computer Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, United States.
Cordovilla Leon DF; Electrical and Computer Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, United States.; Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109, United States.
Lee W; Electrical and Computer Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, United States.
Datta K; Electrical and Computer Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, United States.
Lyu Z; Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109, United States.
Hou J; Electrical and Computer Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, United States.
Taniguchi T; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.
Watanabe K; Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.
Kioupakis E; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
Deotare PB; Electrical and Computer Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, United States.; Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109, United States.
Źródło:
Nano letters [Nano Lett] 2021 Oct 13; Vol. 21 (19), pp. 8409-8417. Date of Electronic Publication: 2021 Sep 30.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: Washington, DC : American Chemical Society, c2001-
MeSH Terms:
Graphite*
Transition Elements*
Diffusion ; Phonons ; Semiconductors
Contributed Indexing:
Keywords: dielectric environment; exciton transport; moiré superlattice; transition metal dichalcogenides
Substance Nomenclature:
0 (Transition Elements)
7782-42-5 (Graphite)
Entry Date(s):
Date Created: 20210930 Date Completed: 20211014 Latest Revision: 20211014
Update Code:
20240105
DOI:
10.1021/acs.nanolett.1c02990
PMID:
34591493
Czasopismo naukowe
The dielectric screening from the disordered media surrounding atomically thin transition metal dichalcogenides (TMDs) monolayers modifies the effective defect energy levels and thereby the transport and energy dynamics of excitons. In this work, we study this effect in WSe 2 monolayers for different combinations of surrounding dielectric media. Specifically, we study the source of the anomalous diffusion of excitons in the WSe 2 monolayer and attribute the anomaly to the modification of the energy distribution of defect states in different disordered dielectric environments. We use this insight to manipulate exciton transport by engineering the dielectric environment using a graphene/hexagonal boron nitride (h-BN) moiré superlattice. Finally, we observe that the effect of dielectric disorder is even more significant at high excitation fluences, contributing to the nonequilibrium phonon drag effect. These results provide an important step toward achieving control over the exciton energy transport for next-generation opto-excitonic devices.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies