Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Capacity differences in working memory based on resting state brain networks.

Tytuł:
Capacity differences in working memory based on resting state brain networks.
Autorzy:
Osaka M; Center for Information and Neural Networks, Advanced ICT Research Institute, National Institute of Information and Communications Technology, 1-4 Yamadaoka, Suita City, Osaka, 565-0871, Japan. .
Kaneda M; Center for Information and Neural Networks, Advanced ICT Research Institute, National Institute of Information and Communications Technology, 1-4 Yamadaoka, Suita City, Osaka, 565-0871, Japan.
Azuma M; Center for Information and Neural Networks, Advanced ICT Research Institute, National Institute of Information and Communications Technology, 1-4 Yamadaoka, Suita City, Osaka, 565-0871, Japan.
Yaoi K; Research Center for Child Mental Development, Kanazawa University, 13-1 Takaramachi, Kanazawa-shi, Ishikawa, 920-8640, Japan.
Shimokawa T; Center for Information and Neural Networks, Advanced ICT Research Institute, National Institute of Information and Communications Technology, 1-4 Yamadaoka, Suita City, Osaka, 565-0871, Japan.
Osaka N; Department of Psychology, Graduate School of Letters, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan.
Źródło:
Scientific reports [Sci Rep] 2021 Sep 30; Vol. 11 (1), pp. 19502. Date of Electronic Publication: 2021 Sep 30.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Connectome*
Memory, Short-Term*
Neural Pathways*
Rest*
Brain/*physiology
Attention ; Brain Mapping ; Cognition ; Humans ; Magnetic Resonance Imaging/methods ; Psychomotor Performance
References:
Baddeley, A. D. Working Memory (Oxford University Press, 1986).
Just, M. A. & Carpenter, P. A. A capacity theory of comprehension: Individual differences in working memory. Psychol. Rev. 99, 122–149 (1992). (PMID: 154611410.1037/0033-295X.99.1.122)
Osaka, N., Logie, R. H. & D’Esposito, M. The Cognitive Neuroscience of Working Memory: Behavioral and Neural Correlates (Oxford University Press, 2007). (PMID: 10.1093/acprof:oso/9780198570394.001.0001)
Daneman, M. & Carpenter, P. A. Individual differences in working memory and reading. J. Verbal Learn. Verbal Behav. 19, 450–466 (1980). (PMID: 10.1016/S0022-5371(80)90312-6)
Daneman, M. & Merikle, P. M. Working memory and language comprehension: A meta-analysis. Psychon. Bull. Rev. 3, 422–433 (1996). (PMID: 2421397610.3758/BF03214546)
Osaka, M. & Osaka, N. Language-independent working memory as measured by Japanese and English reading span tests. Bull. Psychon. Soc. 30, 287–289 (1992). (PMID: 10.3758/BF03330466)
Turner, M. L. & Engle, R. W. Is working memory capacity task dependent?. J. Mem. Lang. 28, 127–154 (1989). (PMID: 10.1016/0749-596X(89)90040-5)
Just, M. A., Carpenter, P. A. & Keller, T. A. The capacity theory of comprehension: New frontiers of evidence and arguments. Psychol. Rev. 103, 773–780 (1996). (PMID: 888865410.1037/0033-295X.103.4.773)
Baddeley, A. Exploring the central executive. Q. J. Exp. Psychol. 49A, 5–28 (1996). (PMID: 10.1080/713755608)
Engle, R. W. Working memory capacity as executive attention. Curr. Dir. Psychol. Sci. 11, 19–23 (2002). (PMID: 10.1111/1467-8721.00160)
Bunge, S. A., Klingberg, T., Jacobsen, R. B. & Gabrieli, J. D. A resource model of the neural basis of executive working memory. Proc. Natl. Acad. Sci. U. S. A. 97, 3573–3578 (2000). (PMID: 107253721628110.1073/pnas.97.7.3573)
D’Esposito, M. From cognitive to neural models of working memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 761–772 (2007). (PMID: 17400538242999510.1098/rstb.2007.2086)
D’Esposito, M., Postle, B. R., Ballard, D. & Lease, J. Maintenance versus manipulation of information held in working memory: An event-related fMRI study. Brain Cogn. 41, 66–86 (1999). (PMID: 1053608610.1006/brcg.1999.1096)
Osaka, M. et al. The neural basis of individual differences in working memory capacity: An fMRI study. Neuroimage 18, 789–797 (2003). (PMID: 1266785510.1016/S1053-8119(02)00032-0)
Osaka, N. et al. The neural basis of executive function in working memory: An fMRI study based on individual differences. Neuroimage 21, 623–631 (2004). (PMID: 1498056510.1016/j.neuroimage.2003.09.069)
Smith, E. E. et al. The neural basis of task-switching in working memory: Effects of performance and aging. Proc. Natl. Acad. Sci. U. S. A. 98, 2095–2100 (2001). (PMID: 111720812938710.1073/pnas.98.4.2095)
Kondo, H., Osaka, N. & Osaka, M. Cooperation of the anterior cingulate cortex and dorsolateral prefrontal cortex for attention shifting. Neuroimage 23, 670–679 (2004). (PMID: 1548841710.1016/j.neuroimage.2004.06.014)
Osaka, M., Komori, M., Morishita, M. & Osaka, N. Neural bases of focusing attention in working memory: An fMRI study based on group differences. Cogn. Affect. Behav. Neurosci. 7, 130–139 (2007). (PMID: 1767238410.3758/CABN.7.2.130)
Osaka, M. & Osaka, N. in The Cognitive Neuroscience of Working Memory (eds Osaka, N., Logie, R. H. & D'Esposito, M.) Ch. 6, 99–118 (Oxford University Press, 2007).
Bressler, S. L. & Menon, V. Large-scale brain networks in cognition: Emerging methods and principles. Trends Cogn. Sci. 14, 277–290 (2010). (PMID: 2049376110.1016/j.tics.2010.04.004)
Menon, V. Large-scale brain networks and psychopathology: A unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011). (PMID: 2190823010.1016/j.tics.2011.08.003)
Mesulam, M. M. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann. Neurol. 28, 597–613 (1990). (PMID: 226084710.1002/ana.410280502)
Andrews-Hanna, J. R. The brain’s default network and its adaptive role in internal mentation. Neuroscientist 18, 251–270 (2012). (PMID: 2167712810.1177/1073858411403316)
Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default network: Anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38 (2008). (PMID: 1840092210.1196/annals.1440.011)
Raichle, M. E. The restless brain: How intrinsic activity organizes brain function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140172 (2015). (PMID: 25823869438751310.1098/rstb.2014.0172)
Raichle, M. E. et al. A default mode of brain function. Proc. Natl. Acad. Sci. U. S. A. 98, 676–682 (2001). (PMID: 112090641464710.1073/pnas.98.2.676)
Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007). (PMID: 17329432268029310.1523/JNEUROSCI.5587-06.2007)
Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U. S. A. 102, 9673–9678 (2005). (PMID: 15976020115710510.1073/pnas.0504136102)
Fransson, P. Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 26, 15–29 (2005). (PMID: 15852468687170010.1002/hbm.20113)
Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: A network model of insula function. Brain Struct. Funct. 214, 655–667 (2010). (PMID: 20512370289988610.1007/s00429-010-0262-0)
Sridharan, D., Levitin, D. J. & Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl. Acad. Sci. U. S. A. 105, 12569–12574 (2008). (PMID: 18723676252795210.1073/pnas.0800005105)
Andrews-Hanna, J. R. et al. Disruption of large-scale brain systems in advanced aging. Neuron 56, 924–935 (2007). (PMID: 18054866270928410.1016/j.neuron.2007.10.038)
Damoiseaux, J. S. et al. Reduced resting-state brain activity in the “default network” in normal aging. Cereb. Cortex 18, 1856–1864 (2008). (PMID: 1806356410.1093/cercor/bhm207)
Hampson, M., Driesen, N., Roth, J. K., Gore, J. C. & Constable, R. T. Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magn. Reson. Imaging 28, 1051–1057 (2010). (PMID: 20409665293666910.1016/j.mri.2010.03.021)
Keller, J. B. et al. Resting-state anticorrelations between medial and lateral prefrontal cortex: Association with working memory, aging, and individual differences. Cortex 64, 271–280 (2015). (PMID: 2556217510.1016/j.cortex.2014.12.001)
Koshino, H., Minamoto, T., Yaoi, K., Osaka, M. & Osaka, N. Coactivation of the default mode network regions and working memory network regions during task preparation. Sci. Rep. 4, 5954 (2014). (PMID: 25092432412160110.1038/srep05954)
Cera, N., Esposito, R., Cieri, F. & Tartaro, A. Altered cingulate cortex functional connectivity in normal aging and mild cognitive impairment. Front. Neurosci. 13, 857 (2019). (PMID: 31572106675322410.3389/fnins.2019.00857)
Esposito, R. et al. Modifications in resting state functional anticorrelation between default mode network and dorsal attention network: Comparison among young adults, healthy elders and mild cognitive impairment patients. Brain Imaging Behav. 12, 127–141 (2018). (PMID: 2817626210.1007/s11682-017-9686-y)
Hampson, M., Driesen, N. R., Skudlarski, P., Gore, J. C. & Constable, R. T. Brain connectivity related to working memory performance. J. Neurosci. 26, 13338–13343 (2006). (PMID: 17182784267769910.1523/JNEUROSCI.3408-06.2006)
Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: From environment to theory of mind. Neuron 58, 306–324 (2008). (PMID: 18466742244186910.1016/j.neuron.2008.04.017)
D’Esposito, M. et al. The neural basis of the central executive system of working memory. Nature 378, 279–281 (1995). (PMID: 747734610.1038/378279a0)
MacDonald, A. W. 3rd., Cohen, J. D., Stenger, V. A. & Carter, C. S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838 (2000). (PMID: 1084616710.1126/science.288.5472.1835)
Paulesu, E., Frith, C. D. & Frackowiak, R. S. The neural correlates of the verbal component of working memory. Nature 362, 342–345 (1993). (PMID: 845571910.1038/362342a0)
Smith, E. E. & Jonides, J. Storage and executive processes in the frontal lobes. Science 283, 1657–1661 (1999). (PMID: 1007392310.1126/science.283.5408.1657)
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. & Cohen, J. D. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001). (PMID: 1148838010.1037/0033-295X.108.3.624)
Braver, T. S. et al. A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 5, 49–62 (1997). (PMID: 903828410.1006/nimg.1996.0247)
Bush, G., Luu, P. & Posner, M. I. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222 (2000). (PMID: 1082744410.1016/S1364-6613(00)01483-2)
Carter, R. Mapping the Mind (Weidenfeld & Nicolson, 1998).
Di, X., Zhang, H. & Biswal, B. B. Anterior cingulate cortex differently modulates frontoparietal functional connectivity between resting-state and working memory tasks. Hum. Brain Mapp. 41, 1797–1805 (2020). (PMID: 31904907726805410.1002/hbm.24912)
Fang, X. et al. Resting-state coupling between core regions within the central-executive and salience networks contributes to working memory performance. Front. Behav. Neurosci. 10, 27 (2016). (PMID: 26941629476629110.3389/fnbeh.2016.00027)
Gilbert, S. J., Dumontheil, I., Simons, J. S., Frith, C. D. & Burgess, P. W. Comment on “Wandering minds: The default network and stimulus-independent thought”. Science 317, 43 (2007). (PMID: 1761532510.1126/science.1140801)
Christoff, K., Gordon, A. M., Smallwood, J., Smith, R. & Schooler, J. W. Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc. Natl. Acad. Sci. U. S. A. 106, 8719–8724 (2009). (PMID: 19433790268903510.1073/pnas.0900234106)
Fox, K. C., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R. & Christoff, K. The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. Neuroimage 111, 611–621 (2015). (PMID: 2572546610.1016/j.neuroimage.2015.02.039)
Sporns, O. Networks of the Brain (MIT Press, 2011).
Whitfield-Gabrieli, S. & Ford, J. M. Default mode network activity and connectivity in psychopathology. Annu. Rev. Clin. Psychol. 8, 49–76 (2012). (PMID: 2222483410.1146/annurev-clinpsy-032511-143049)
Nieto-Castanon, A. Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN (Hilbert Press, 2020). (PMID: 10.56441/hilbertpress.2207.6598)
Entry Date(s):
Date Created: 20211001 Date Completed: 20211228 Latest Revision: 20230206
Update Code:
20240105
PubMed Central ID:
PMC8484281
DOI:
10.1038/s41598-021-98848-2
PMID:
34593909
Czasopismo naukowe
Herein, we compared the connectivity of resting-state networks between participants with high and low working memory capacity groups. Brain network connectivity was assessed under both resting and working memory task conditions. Task scans comprised dual-task (reading sentences while memorizing target words) and single-task (reading sentences) conditions. The low capacity group showed relatively stronger connectivity during resting-state in most brain regions, and the high capacity group showed a stronger connectivity between the medial prefrontal and posterior parietal cortices. During task performance, the dorsal attention and salience networks were relatively strongly connected in the high capacity group. In the comparison between dual- and single-task conditions, increased coupling between the anterior cingulate cortex and other attentional control-related areas were noted in the high capacity group. These findings suggest that working memory differences are related with network connectivity variations in attentional control-associated regions during both resting and task performance conditions.
(© 2021. The Author(s).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies