Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Phylogenetic conservatism explains why plants are more likely to produce fleshy fruits in the tropics.

Tytuł:
Phylogenetic conservatism explains why plants are more likely to produce fleshy fruits in the tropics.
Autorzy:
Wang G; CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan Province, 666303, China.
Ives AR; Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
Zhu H; Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan Province, 666303, China.
Tan Y; Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan Province, 666303, China.
Chen SC; Royal Botanic Gardens, Kew, Wakehurst, West Sussex, RH17 6TN, United Kingdom.; Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei Province, 430074, China.
Yang J; CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan Province, 666303, China.
Wang B; Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan Province, 666303, China.; School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China.; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration (Anhui University), Hefei, Anhui Province, 230601, China.
Źródło:
Ecology [Ecology] 2022 Jan; Vol. 103 (1), pp. e03555. Date of Electronic Publication: 2021 Nov 04.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Publication: Washington, DC : Ecological Society of America
Original Publication: Brooklyn, NY : Brooklyn Botanical Garden
MeSH Terms:
Fruit*
Phylogeny*
Plants*
Tropical Climate*
China ; Plant Development
References:
Bolmgren, K., and O. Eriksson. 2005. Fleshy fruits - origins, niche shifts, and diversification. Oikos 109:255-272.
Burke, M. J., L. V. Gusta, H. A. Quamme, C. J. Weiser, and P. H. Li. 1976. Freezing and injury in plants. Annual Review of Plant Physiology 27:507-528.
Chen, J., T. H. Fleming, L. Zhang, H. Wang, and Y. Liu. 2004. Patterns of fruit traits in a tropical rainforest in Xishuangbanna, SW China. Acta Oecologica-International Journal of Ecology 26:157-164.
Chen, S.-C., W. K. Cornwell, H.-X. Zhang, and A. T. Moles. 2017. Plants show more flesh in the tropics: variation in fruit type along latitudinal and climatic gradients. Ecography 40:531-538.
Coombe, B. G. 1976. The development of fleshy fruits. Annual Review of Plant Physiology 27:207-228.
Cortes-Flores, J., E. Andresen, G. Cornejo-Tenorio, and G. Ibarra-Manriquez. 2013. Fruiting phenology of seed dispersal syndromes in a Mexican Neotropical temperate forest. Forest Ecology and Management 289:445-454.
de Queiroz, A. 2002. Contingent predictability in evolution: key traits and diversification. Systematic Biology 51:917-929.
Feeny, P. 1976. Plant apparency and chemical defense. Pages 1-40 in J. W. Wallace and R. L. Mansell, editors. Recent advances in phytochemistry. Plenum Press, New York, New York, USA.
Fleming, T. H., and W. J. Kress. 2011. A brief history of fruits and frugivores. Acta Oecologica-International Journal of Ecology 37:521-530.
Herrera, C. M. 2002. Seed dispersal by vertebrates. Pages 185-210 in C. M. Herrera and O. Pellmyr, editors. Plant-animal interactions: an evolutionary approach. Blackwell Science, Oxford, UK.
Ives, A. R. 2019. R2s for correlated data: phylogenetic models, LMMs, and GLMMs. Systematic Biology 68:234-251.
Ives, A. R., and T. Garland. 2010. Phylogenetic logistic regression for binary dependent variables. Systematic Biology 59:9-26.
Ives, A. R., and D. Li. 2018. rr2: An R package to calculate R2s for regression models. Journal of Open Source Software 3:1028.
Jordano, P., C. Garcia, J. A. Godoy, and J. L. Garcia-Castano. 2007. Differential contribution of frugivores to complex seed dispersal patterns. Proceedings of the National Academy of Sciences of the United States of America 104:3278-3282.
Kissling, W. D., K. Böhning-Gaese, and W. Jetz. 2009. The global distribution of frugivory in birds. Global Ecology and Biogeography 18:150-162.
Li, D., A. R. Ives, and D. M. Waller. 2017. Can functional traits account for phylogenetic signal in community composition? New Phytologist 214:607-618.
Moles, A. T. 2018. Being John Harper: Using evolutionary ideas to improve understanding of global patterns in plant traits. Journal of Ecology 106:1-18.
Moles, A. T., D. D. Ackerly, J. C. Tweddle, J. B. Dickie, R. Smith, M. R. Leishman, M. M. Mayfield, A. Pitman, J. T. Wood, and M. Westoby. 2007. Global patterns in seed size. Global Ecology and Biogeography 16:109-116.
Moles, A. T., D. D. Ackerly, C. O. Webb, J. C. Tweddle, J. B. Dickie, and M. Westoby. 2005. A brief history of seed size. Science 307:576-580.
Moles, A. T., D. I. Warton, L. Warman, N. G. Swenson, S. W. Laffan, A. E. Zanne, A. Pitman, F. A. Hemmings, and M. R. Leishman. 2009. Global patterns in plant height. Journal of Ecology 97:923-932.
Onstein, R. E., W. J. Baker, T. L. P. Couvreur, S. Faurby, J.-C. Svenning, and W. D. Kissling. 2017. Frugivory-related traits promote speciation of tropical palms. Nature Ecology & Evolution 1:1903-1911.
Qian, H., and Y. Jin. 2016. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. Journal of Plant Ecology 9:233-239.
Swenson, N. G., and B. J. Enquist. 2007. Ecological and evolutionary determinants of a key plant functional trait: Wood density and its community-wide variation across latitude and elevation. American Journal of Botany 94:451-459.
Tung Ho, L. S., and C. Ane. 2014. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Systematic Biology 63:397-408.
Valverde-Barrantes, O. J., G. T. Freschet, C. Roumet, and C. B. Blackwood. 2017. A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytologist 215:1562-1573.
Wang, B. 2021. Fruit type of 9370 species in Yunnan Province, China.xlsx. Figshare, data set. https://doi.org/10.6084/m9.figshare.16681798.v1.
Willson, M. F., A. K. Irvine, and N. G. Walsh. 1989. Vertebrate dispersal syndromes in some Australian and New-Zealand plant-communities, with geographic comparisons. Biotropica 21:133-147.
Zanne, A. E., et al. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506:89-92.
Zhao, Y., H. Cao, W. Xu, G. Chen, J. Lian, Y. Du, and K. Ma. 2018. Contributions of precipitation and temperature to the large scale geographic distribution of fleshy-fruited plant species: growth form matters. Scientific Reports 8:17017.
Zhu, H. 2012. Biogeographical divergence of the flora of Yunnan, southwestern China initiated by the uplift of Himalaya and extrusion of Indochina block. PLoS One 7:e45601.
Contributed Indexing:
Keywords: climate factor; dry fruit; fleshy fruit; fruit type; functional trait; partial R2; phylogeny; subtropical; temperate; tropical
Molecular Sequence:
figshare 10.6084/m9.figshare.16681798.v1
Entry Date(s):
Date Created: 20211008 Date Completed: 20220107 Latest Revision: 20220531
Update Code:
20240104
DOI:
10.1002/ecy.3555
PMID:
34622943
Czasopismo naukowe
Plant functional traits often show strong latitudinal trends. To explain these trends, studies have often focused on environmental variables, correlations with other traits that themselves show latitudinal trends, and phylogenetic conservatism. However, few studies have systematically disentangled the relative contributions of these factors. Using a dataset consisting of 9,370 plant species from Southwest China, we investigated factors affecting fruit type (fleshy vs. dry): plant growth form, environmental constraints (summarized by climate region), and phylogenetic conservatism. Growth form and climate region are often cited in the literature as important explanations for the higher proportion of fleshy fruited species in the tropics. Nonetheless, in our analyses using partial R 2 , growth form and climate region explained only 1.7% and 0.3%, respectively, of the variance in fruit type in a model including phylogeny, while phylogenetic conservatism explained 79.5%. Furthermore, phylogenetic conservatism was evenly distributed along the phylogeny, implying that fruit type reflects both ancient and recent phylogenetic relationships. Our findings illustrate the value of parsing out the contributions of explanatory variables and phylogeny to the variance in species' traits. Methods using phylogenies that calculate partial R 2 give a more informative tool than traditional methods to explore the phylogenetic patterns of functional traits.
(© 2021 by the Ecological Society of America.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies