Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Processing and Bypass of a Site-Specific DNA Adduct of the Cytotoxic Platinum-Acridinylthiourea Conjugate by Polymerases Involved in DNA Repair: Biochemical and Thermodynamic Aspects.

Tytuł:
Processing and Bypass of a Site-Specific DNA Adduct of the Cytotoxic Platinum-Acridinylthiourea Conjugate by Polymerases Involved in DNA Repair: Biochemical and Thermodynamic Aspects.
Autorzy:
Hreusova M; Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ 61265 Brno, Czech Republic.
Brabec V; Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ 61265 Brno, Czech Republic.; Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, CZ 78371 Olomouc, Czech Republic.
Novakova O; Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ 61265 Brno, Czech Republic.
Źródło:
International journal of molecular sciences [Int J Mol Sci] 2021 Oct 07; Vol. 22 (19). Date of Electronic Publication: 2021 Oct 07.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Basel, Switzerland : MDPI, [2000-
MeSH Terms:
DNA Damage*
DNA Repair*
DNA Adducts/*chemistry
DNA-Directed DNA Polymerase/*metabolism
Intercalating Agents/*chemistry
Organoplatinum Compounds/*chemistry
Urea/*analogs & derivatives
DNA Replication ; Humans ; Urea/chemistry
References:
Nucleic Acids Res. 2008 Jul;36(12):3867-78. (PMID: 18499711)
Crit Rev Biochem Mol Biol. 2017 Jun;52(3):274-303. (PMID: 28279077)
Nucleic Acids Res. 2002 Aug 1;30(15):3323-32. (PMID: 12140316)
Metallomics. 2018 Jan 24;10(1):132-144. (PMID: 29242879)
DNA Repair (Amst). 2003 Aug 12;2(8):909-24. (PMID: 12893087)
Biochem Pharmacol. 2010 Feb 15;79(4):552-64. (PMID: 19782655)
J Biol Chem. 2001 Jun 1;276(22):18999-9005. (PMID: 11259423)
Annu Rev Biochem. 2002;71:133-63. (PMID: 12045093)
Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1982-5. (PMID: 2000402)
DNA Repair (Amst). 2002 Dec 5;1(12):1003-16. (PMID: 12531010)
DNA Repair (Amst). 2020 Feb;86:102753. (PMID: 31805501)
Biochemistry. 1994 Jan 25;33(3):764-72. (PMID: 8292604)
J Am Chem Soc. 2007 Oct 10;129(40):12108-9. (PMID: 17867689)
Arch Biochem Biophys. 2007 Mar 15;459(2):264-72. (PMID: 17224122)
Curr Top Med Chem. 2004;4(15):1537-49. (PMID: 15579095)
Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5345-9. (PMID: 8506383)
DNA Repair (Amst). 2004 Jun 3;3(6):659-69. (PMID: 15135733)
J Biol Chem. 1992 Sep 15;267(26):18520-6. (PMID: 1526988)
J Biol Chem. 1990 Feb 5;265(4):2338-46. (PMID: 1688852)
J Mol Biol. 2018 May 25;430(11):1577-1589. (PMID: 29715472)
J Am Chem Soc. 2004 Apr 14;126(14):4492-3. (PMID: 15070347)
Int J Mol Sci. 2020 Oct 21;21(20):. (PMID: 33096927)
Genes Dev. 2000 Jul 1;14(13):1642-50. (PMID: 10887158)
Chem Rev. 2016 Mar 9;116(5):3436-86. (PMID: 26865551)
J Mol Biol. 2000 Feb 25;296(3):803-12. (PMID: 10677282)
Int J Mol Sci. 2019 Oct 10;20(20):. (PMID: 31658654)
Biochemistry. 1996 Dec 24;35(51):16705-13. (PMID: 8988007)
Biochemistry. 2004 Jul 6;43(26):8560-7. (PMID: 15222767)
Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14719-24. (PMID: 14623953)
J Mol Biol. 2001 May 18;308(5):823-37. (PMID: 11352575)
Chem Asian J. 2012 May;7(5):1026-31. (PMID: 22374916)
Biophys J. 2007 Dec 1;93(11):3950-62. (PMID: 17704160)
Chemistry. 2009 Jun 15;15(25):6211-21. (PMID: 19449361)
J Biol Chem. 2015 Jan 9;290(2):775-87. (PMID: 25391658)
Nucleic Acids Res. 2011 Sep 1;39(17):7455-64. (PMID: 21666254)
Chem Soc Rev. 2012 Apr 21;41(8):3179-92. (PMID: 22314926)
Structure. 2003 May;11(5):489-96. (PMID: 12737815)
J Biol Chem. 1998 Oct 16;273(42):27259-67. (PMID: 9765249)
Anticancer Agents Med Chem. 2007 Jan;7(1):125-38. (PMID: 17266509)
Chem Commun (Camb). 2007 Nov 28;(44):4565-79. (PMID: 17989802)
J Biol Inorg Chem. 2004 Apr;9(3):335-44. (PMID: 15024635)
Metallomics. 2009;1(4):280-91. (PMID: 20046924)
J Biol Chem. 2011 Sep 16;286(37):32094-104. (PMID: 21757740)
J Biol Chem. 2003 Nov 28;278(48):47516-25. (PMID: 12970368)
Methods Enzymol. 1995;262:232-56. (PMID: 8594351)
Biochemistry. 1992 Apr 28;31(16):3975-90. (PMID: 1314653)
Philos Trans R Soc Lond B Biol Sci. 2001 Jan 29;356(1405):53-60. (PMID: 11205331)
Nucleic Acids Res. 2001 May 15;29(10):2034-40. (PMID: 11353072)
Nucleic Acids Res. 2006 Jan 31;34(2):564-74. (PMID: 16449200)
J Biol Chem. 1989 Aug 5;264(22):13018-23. (PMID: 2502545)
Mol Pharm. 2011 Oct 3;8(5):1941-54. (PMID: 21806015)
Curr Opin Struct Biol. 2018 Dec;53:77-87. (PMID: 30005324)
Nucleic Acids Res. 2003 Jul 15;31(14):4138-46. (PMID: 12853631)
Biochemistry. 2003 Dec 9;42(48):14197-206. (PMID: 14640687)
Nat Rev Cancer. 2007 Aug;7(8):573-84. (PMID: 17625587)
Biochemistry. 2015 Dec 29;54(51):7449-56. (PMID: 26624500)
Cancer Res. 2004 Sep 15;64(18):6469-75. (PMID: 15374956)
Proc Natl Acad Sci U S A. 1988 Sep;85(17):6252-6. (PMID: 3413095)
Biochemistry. 2000 Apr 25;39(16):4575-80. (PMID: 10769112)
Biophys J. 2005 Feb;88(2):1207-14. (PMID: 15574710)
Science. 2007 Nov 9;318(5852):967-70. (PMID: 17991862)
Annu Rev Biochem. 2005;74:317-53. (PMID: 15952890)
Biochemistry. 2003 Mar 4;42(8):2373-85. (PMID: 12600204)
Cancer Res. 2005 Nov 1;65(21):9799-806. (PMID: 16267001)
Chemistry. 2012 Feb 6;18(6):1634-9. (PMID: 22213228)
Biochemistry. 1997 Dec 9;36(49):15336-42. (PMID: 9398262)
Nucleic Acids Res. 2000 May 1;28(9):1929-34. (PMID: 10756193)
J Am Chem Soc. 2003 Aug 13;125(32):9629-37. (PMID: 12904029)
Crit Rev Biochem Mol Biol. 1993;28(2):83-126. (PMID: 8485987)
J Med Chem. 2008 Dec 11;51(23):7574-80. (PMID: 19012390)
Biochemistry. 2005 Apr 26;44(16):6059-70. (PMID: 15835895)
Grant Information:
21-27514S Grantová Agentura České Republiky
Contributed Indexing:
Keywords: DNA polymerases; antitumor; cytotoxic; drug resistance; lesion bypass; metal–intercalator; microscale thermophoresis; platinum–acridine; thermodynamic; translesion synthesis
Substance Nomenclature:
0 (1-(2-(acridin-9-ylamino)ethyl)-1,3-dimethylthiourea)
0 (DNA Adducts)
0 (Intercalating Agents)
0 (Organoplatinum Compounds)
8W8T17847W (Urea)
EC 2.7.7.7 (DNA-Directed DNA Polymerase)
Entry Date(s):
Date Created: 20211013 Date Completed: 20211025 Latest Revision: 20211025
Update Code:
20240105
PubMed Central ID:
PMC8509567
DOI:
10.3390/ijms221910838
PMID:
34639179
Czasopismo naukowe
DNA-dependent DNA and RNA polymerases are important modulators of biological functions such as replication, transcription, recombination, or repair. In this work performed in cell-free media, we studied the ability of selected DNA polymerases to overcome a monofunctional adduct of the cytotoxic/antitumor platinum-acridinylthiourea conjugate [PtCl(en)(L)](NO 3 ) 2 (en = ethane-1,2-diamine, L = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea) (ACR) in its favored 5'-CG sequence. We focused on how a single site-specific ACR adduct with intercalation potency affects the processivity and fidelity of DNA-dependent DNA polymerases involved in translesion synthesis (TLS) and repair. The ability of the G(N7) hybrid ACR adduct formed in the 5'-TCGT sequence of a 24-mer DNA template to inhibit the synthesis of a complementary DNA strand by the exonuclease-deficient Klenow fragment of DNA polymerase I (KF exo- ) and human polymerases eta, kappa, and iota was supplemented by thermodynamic analysis of the polymerization process. Thermodynamic parameters of a simulated translesion synthesis across the ACR adduct were obtained by using microscale thermophoresis (MST). Our results show a strong inhibitory effect of an ACR adduct on enzymatic TLS: there was only small synthesis of a full-length product (less than 10%) except polymerase eta (~20%). Polymerase eta was able to most efficiently bypass the ACR hybrid adduct. Incorporation of a correct dCMP opposite the modified G residue is preferred by all the four polymerases tested. On the other hand, the frequency of misinsertions increased. The relative efficiency of misinsertions is higher than that of matched cytidine monophosphate but still lower than for the nonmodified control duplex. Thermodynamic inspection of the simulated TLS revealed a significant stabilization of successively extended primer/template duplexes containing an ACR adduct. Moreover, no significant decrease of dissociation enthalpy change behind the position of the modification can contribute to the enzymatic TLS observed with the DNA-dependent, repair-involved polymerases. This TLS could lead to a higher tolerance of cancer cells to the ACR conjugate compared to its enhanced analog, where thiourea is replaced by an amidine group: [PtCl(en)(L)](NO 3 ) 2 (complex AMD, en = ethane-1,2-diamine, L = N-[2-(acridin-9-ylamino)ethyl]-N-methylpropionamidine).
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies