Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Breed-specific reference sequence optimized mapping accuracy of NGS analyses for pigs.

Tytuł:
Breed-specific reference sequence optimized mapping accuracy of NGS analyses for pigs.
Autorzy:
Wang D; National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China.; College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.
Yang L; National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China.
Ning C; National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China.; College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.
Liu JF; National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China.
Zhao X; National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China. .
Źródło:
BMC genomics [BMC Genomics] 2021 Oct 12; Vol. 22 (1), pp. 736. Date of Electronic Publication: 2021 Oct 12.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: London : BioMed Central, [2000-
MeSH Terms:
High-Throughput Nucleotide Sequencing*
Polymorphism, Single Nucleotide*
Animals ; DNA, Mitochondrial/genetics ; Sequence Analysis, DNA ; Swine/genetics
References:
Brief Bioinform. 2020 Jul 15;21(4):1368-1377. (PMID: 31204429)
Bioinformatics. 2009 Jul 15;25(14):1754-60. (PMID: 19451168)
Mol Ecol Resour. 2016 May;16(3):686-93. (PMID: 26607054)
Gigascience. 2012 Dec 27;1(1):18. (PMID: 23587118)
Virus Evol. 2020 Oct 05;6(2):veaa075. (PMID: 33318859)
Mitochondrial DNA B Resour. 2017 Jan 4;1(1):949-950. (PMID: 33490429)
Reprod Fertil Dev. 2019 Apr;31(4):805-809. (PMID: 30611314)
Bioinformatics. 2011 Nov 1;27(21):2987-93. (PMID: 21903627)
Genome Biol. 2020 Nov 10;21(1):275. (PMID: 33168033)
Zool Res. 2017 Jul 18;38(4):208-210. (PMID: 28825453)
Nucleic Acids Res. 2008 Nov;36(19):e122. (PMID: 18753151)
Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. (PMID: 26553804)
J Mol Biol. 1990 Oct 5;215(3):403-10. (PMID: 2231712)
J Anim Sci Biotechnol. 2017 Apr 1;8:31. (PMID: 28405314)
Bioinformatics. 2009 Jun 1;25(11):1451-2. (PMID: 19346325)
Genome Biol. 2016 Mar 31;17:60. (PMID: 27036623)
Mol Ecol Resour. 2016 Mar;16(2):434-45. (PMID: 26388536)
BMC Bioinformatics. 2017 Mar 1;18(1):139. (PMID: 28249565)
Biol Lett. 2011 Feb 23;7(1):116-8. (PMID: 20810427)
PLoS One. 2014 Dec 11;9(12):e114763. (PMID: 25501044)
Meta Gene. 2015 Jun 17;5:105-14. (PMID: 26137446)
Genome Res. 2010 Sep;20(9):1297-303. (PMID: 20644199)
Hum Genomics. 2015 Aug 19;9:20. (PMID: 26286629)
Anim Biotechnol. 2019 Jul;30(3):219-232. (PMID: 29938580)
IEEE Int Conf Bioinform Biomed Workshops. 2012 Oct;2012:718-724. (PMID: 25621316)
Mol Biol Evol. 2013 Dec;30(12):2725-9. (PMID: 24132122)
Genome Biol Evol. 2013;5(1):113-29. (PMID: 23254394)
Front Genet. 2020 Dec 15;11:579382. (PMID: 33384712)
Bioinformatics. 2014 Jan 1;30(1):31-7. (PMID: 23732276)
Hepatol Int. 2016 Jan;10(1):147-57. (PMID: 26208819)
Genome Res. 2009 Apr;19(4):682-9. (PMID: 19176791)
J Clin Microbiol. 2016 Jul;54(7):1891-1895. (PMID: 27076659)
J Anim Sci Biotechnol. 2018 Nov 26;9:86. (PMID: 30534375)
Genome Res. 2017 May;27(5):865-874. (PMID: 27646534)
Bioinformatics. 2011 Feb 1;27(3):334-42. (PMID: 21148543)
Genome Res. 2012 Mar;22(3):568-76. (PMID: 22300766)
Mol Biol Evol. 2016 Jul;33(7):1870-4. (PMID: 27004904)
Bioinformatics. 2011 Jun 15;27(12):1704-5. (PMID: 21505035)
Zool Res. 2018 Mar 18;39(2):127-129. (PMID: 29515095)
Grant Information:
31961133031 National Natural Science Foundation of China-Deutsche Forschungsgemeinschaft; 32002172 national natural science foundation of china; 31672379 national natural science foundation of china; 2020M682217 China Postdoctoral Science Foundation; ZR2020QC176 shandong provincial natural science foundation; ZR2020QC175 shandong provincial natural science foundation
Contributed Indexing:
Keywords: Mapping; Mitochondrial genome; Pig; Reference sequence; SNP calling
Substance Nomenclature:
0 (DNA, Mitochondrial)
Entry Date(s):
Date Created: 20211013 Date Completed: 20211014 Latest Revision: 20211022
Update Code:
20240104
PubMed Central ID:
PMC8507312
DOI:
10.1186/s12864-021-08030-1
PMID:
34641784
Czasopismo naukowe
Background: Reference sequences play a vital role in next-generation sequencing (NGS), impacting mapping quality during genome analyses. However, reference genomes usually do not represent the full range of genetic diversity of a species as a result of geographical divergence and independent demographic events of different populations. For the mitochondrial genome (mitogenome), which occurs in high copy numbers in cells and is strictly maternally inherited, an optimal reference sequence has the potential to make mitogenome alignment both more accurate and more efficient. In this study, we used three different types of reference sequences for mitogenome mapping, i.e., the commonly used reference sequence (CU-ref), the breed-specific reference sequence (BS-ref) and the sample-specific reference sequence (SS-ref), respectively, and compared the accuracy of mitogenome alignment and SNP calling among them, for the purpose of proposing the optimal reference sequence for mitochondrial DNA (mtDNA) analyses of specific populations RESULTS: Four pigs, representing three different breeds, were high-throughput sequenced, subsequently mapping reads to the reference sequences mentioned above, resulting in a largest mapping ratio and a deepest coverage without increased running time when aligning reads to a BS-ref. Next, single nucleotide polymorphism (SNP) calling was carried out by 18 detection strategies with the three tools SAMtools, VarScan and GATK with different parameters, using the bam results mapping to BS-ref. The results showed that all eighteen strategies achieved the same high specificity and sensitivity, which suggested a high accuracy of mitogenome alignment by the BS-ref because of a low requirement for SNP calling tools and parameter choices.
Conclusions: This study showed that different reference sequences representing different genetic relationships to sample reads influenced mitogenome alignment, with the breed-specific reference sequences being optimal for mitogenome analyses, which provides a refined processing perspective for NGS data.
(© 2021. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies