Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Transcriptomics of chicken cecal tonsils and intestine after infection with low pathogenic avian influenza virus H9N2.

Tytuł:
Transcriptomics of chicken cecal tonsils and intestine after infection with low pathogenic avian influenza virus H9N2.
Autorzy:
Alqazlan N; Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
Emam M; Department of Human Genetics, McGill University, Montreal, QC, H3A 0E7, Canada.
Nagy É; Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
Bridle B; Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
Sargolzaei M; Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.; Select Sires, Inc., Plain City, OH, 43064, USA.
Sharif S; Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada. .
Źródło:
Scientific reports [Sci Rep] 2021 Oct 14; Vol. 11 (1), pp. 20462. Date of Electronic Publication: 2021 Oct 14.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Cecum/*immunology
Ileum/*immunology
Influenza A Virus, H9N2 Subtype/*immunology
Influenza in Birds/*immunology
Animals ; Cecum/metabolism ; Chickens ; Female ; Gene Expression Profiling ; Heat-Shock Proteins/genetics ; Heat-Shock Proteins/metabolism ; Ileum/metabolism ; Immunity, Innate ; Influenza in Birds/genetics ; Influenza in Birds/metabolism ; Interferons/genetics ; Interferons/metabolism ; RNA, Messenger
References:
Jakhesara, S. J., Bhatt, V. D., Patel, N. V., Prajapati, K. S. & Joshi, C. G. Isolation and characterization of H9N2 influenza virus isolates from poultry respiratory disease outbreak. Springerplus 3, 196 (2014). (PMID: 24790833400478810.1186/2193-1801-3-196)
Qi, X. et al. Deterioration of eggshell quality in laying hens experimentally infected with H9N2 avian influenza virus. Vet. Res. 47, 35 (2016). (PMID: 26915662476668310.1186/s13567-016-0322-4)
Horman, W. S. J., Nguyen, T. H. O., Kedzierska, K., Bean, A. G. D. & Layton, D. S. The drivers of pathology in zoonotic avian influenza: the interplay between host and pathogen. Front. Immunol. 9, 19 (2018). (PMID: 10.3389/fimmu.2018.01812)
Li, X. et al. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 avian influenza viruses. PLoS Pathog. 10, 1200 (2014). (PMID: 10.1371/journal.ppat.1004508)
CDC. Summary of Influenza Risk Assessment Tool (IRAT) Results |Pandemic Influenza (Flu)| CDC. The Centers for Disease Control and Prevention https://www.cdc.gov/flu/pandemic-resources/monitoring/irat-virus-summaries.htm (2020).
WHO, W. H. O. Influenza (Avian and other zoonotic). The World Health Organization https://www.who.int/news-room/fact-sheets/detail/influenza-(avian-and-other-zoonotic ) (2018).
Kageyama, T. et al. Genetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China. Science 18, 16 (2013).
Cao, Y. et al. Differential responses of innate immunity triggered by different subtypes of influenza a viruses in human and avian hosts. BMC Med. Genom. 10, 70 (2017). (PMID: 10.1186/s12920-017-0304-z)
Josset, L., Zeng, H., Kelly, S. M., Tumpey, T. M. & Katze, M. G. Transcriptomic characterization of the novel avian-origin influenza a (H7N9) virus: specific host response and responses intermediate between avian (H5N1 and H7N7) and human (H3N2) viruses and implications for treatment options. mBio 5, 1900 (2014). (PMID: 10.1128/mBio.01102-13)
Samy, A. A. et al. Different counteracting host immune responses to clade 2.2.1.1 and 2.2.1.2 Egyptian H5N1 highly pathogenic avian influenza viruses in naïve and vaccinated chickens. Vet. Microbiol. 183, 103–109 (2016). (PMID: 2679094210.1016/j.vetmic.2015.12.005)
Suzuki, K. et al. Association of increased pathogenicity of Asian H5N1 highly pathogenic avian influenza viruses in chickens with highly efficient viral replication accompanied by early destruction of innate immune responses. J. Virol. 83, 7475–7486 (2009). (PMID: 19457987270864810.1128/JVI.01434-08)
Payne, S. Chapter 23 - Family Orthomyxoviridae. in Viruses (ed. Payne, S.) 197–208 (Academic Press, 2017). https://doi.org/10.1016/B978-0-12-803109-4.00023-4 .
Li, H. et al. Avian influenza virus subtype H9N2 affects intestinal microbiota, barrier structure injury, and inflammatory intestinal disease in the chicken Ileum. Viruses 10, 196 (2018). (PMID: 10.3390/v10050270)
Yitbarek, A., Weese, J. S., Alkie, T. N., Parkinson, J. & Sharif, S. Influenza A virus subtype H9N2 infection disrupts the composition of intestinal microbiota of chickens. FEMS Microbiol. Ecol. 94, 290 (2018). (PMID: 10.1093/femsec/fix165)
Yitbarek, A. et al. Gut microbiota modulates type I interferon and antibody-mediated immune responses in chickens infected with influenza virus subtype H9N2. Benef. Microbes 9, 417–427 (2018). (PMID: 2938064310.3920/BM2017.0088)
Ahluwalia, B., Magnusson, M. K. & Öhman, L. Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad. Scand. J. Gastroenterol. 52, 1185–1193 (2017). (PMID: 2869765110.1080/00365521.2017.1349173)
Montalban-Arques, A., Chaparro, M., Gisbert, J. P. & Bernardo, D. The innate immune system in the gastrointestinal tract: role of intraepithelial lymphocytes and lamina propria innate lymphoid cells in intestinal inflammation. Inflamm. Bowel Dis. 24, 1649–1659 (2018). (PMID: 2978827110.1093/ibd/izy177)
Nochi, T., Jansen, C. A., Toyomizu, M. & van Eden, W. The well-developed mucosal immune systems of birds and mammals allow for similar approaches of mucosal vaccination in both types of animals. Front. Nutr. 5, 1036 (2018). (PMID: 10.3389/fnut.2018.00060)
Bar-Shira, E., Sklan, D. & Friedman, A. Establishment of immune competence in the avian GALT during the immediate post-hatch period. Dev. Comp. Immunol. 27, 147–157 (2003). (PMID: 1254312810.1016/S0145-305X(02)00076-9)
Casteleyn, C. et al. Locations of gut-associated lymphoid tissue in the 3-month-old chicken: a review. Avian Pathol. 39, 143–150 (2010). (PMID: 2054441810.1080/03079451003786105)
Kitagawa, H., Hiratsuka, Y., Imagawa, T. & Uehara, M. Distribution of lymphoid tissue in the caecal mucosa of chickens. J. Anat. 192, 293–298 (1998). (PMID: 9643430146776310.1046/j.1469-7580.1998.19220293.x)
Aliberti, J. Immunity and tolerance induced by intestinal mucosal dendritic cells. Mediators Inflamm 2016, e3104727 (2016). (PMID: 10.1155/2016/3104727)
Flannigan, K. L., Geem, D., Harusato, A. & Denning, T. L. Intestinal antigen-presenting cells. Am. J. Pathol. 185, 1809–1819 (2015). (PMID: 25976247448345810.1016/j.ajpath.2015.02.024)
Wang, Y. et al. Integrated analysis of microRNA expression and mRNA transcriptome in lungs of avian influenza virus infected broilers. BMC Genom. 13, 278 (2012). (PMID: 10.1186/1471-2164-13-278)
Liu, Q. et al. Transcriptomic profile of chicken bone marrow-derive dendritic cells in response to H9N2 avian influenza A virus. Vet. Immunol. Immunopathol. 220, 109992 (2020). (PMID: 3184679810.1016/j.vetimm.2019.109992)
Reemers, S. S. et al. Reduced immune reaction prevents immunopathology after challenge with avian influenza virus: a transcriptomics analysis of adjuvanted vaccines. Vaccine 28, 6351–6360 (2010). (PMID: 2063730810.1016/j.vaccine.2010.06.099)
An, J. et al. A homeostasis hypothesis of avian influenza resistance in chickens. Genes 10, 543 (2019). (PMID: 667890210.3390/genes10070543)
Kuchipudi, S. V. et al. Highly pathogenic avian influenza virus infection in chickens but not ducks is associated with elevated host immune and pro-inflammatory responses. Vet. Res. 45, 118 (2014). (PMID: 25431115424655610.1186/s13567-014-0118-3)
Meyer, L. et al. Transcriptomic profiling of a chicken lung epithelial cell line (CLEC213) reveals a mitochondrial respiratory chain activity boost during influenza virus infection. PLOS ONE 12, e0176355 (2017). (PMID: 28441462540478810.1371/journal.pone.0176355)
Wang, Y., Lupiani, B., Reddy, S. M., Lamont, S. J. & Zhou, H. RNA-seq analysis revealed novel genes and signaling pathway associated with disease resistance to avian influenza virus infection in chickens. Poult. Sci. 93, 485–493 (2014). (PMID: 2457047310.3382/ps.2013-03557)
Smith, J. et al. A comparative analysis of host responses to avian influenza infection in ducks and chickens highlights a role for the interferon-induced transmembrane proteins in viral resistance. BMC Genom. 16, 574 (2015). (PMID: 10.1186/s12864-015-1778-8)
Kim, T. H., Kern, C. & Zhou, H. Knockout of IRF7 highlights its modulator function of host response against avian influenza virus and the involvement of MAPK and TOR signaling pathways in chicken. Genes 11, 385 (2020). (PMID: 723031010.3390/genes11040385)
Suresh, R. & Mosser, D. M. Pattern recognition receptors in innate immunity, host defense, and immunopathology. Adv. Physiol. Educ. 37, 284–291 (2013). (PMID: 24292903408909210.1152/advan.00058.2013)
Vidya, M. K. et al. Toll-like receptors: significance, ligands, signaling pathways, and functions in mammals. Int. Rev. Immunol. 37, 20–36 (2018). (PMID: 2902836910.1080/08830185.2017.1380200)
Chen, X. et al. Host immune response to influenza a virus infection. Front. Immunol. 9, 1000 (2018).
Koutsakos, M., Kedzierska, K. & Subbarao, K. Immune responses to avian influenza viruses. J. Immunol. 202, 382–391 (2019). (PMID: 3061712010.4049/jimmunol.1801070)
Schmolke, M. & García-Sastre, A. Evasion of innate and adaptive immune responses by influenza A virus. Cell. Microbiol. 12, 873–880 (2010). (PMID: 20482552289795610.1111/j.1462-5822.2010.01475.x)
Liniger, M., Summerfield, A., Zimmer, G., McCullough, K. C. & Ruggli, N. Chicken cells sense influenza A virus infection through MDA5 and CARDIF signaling involving LGP2. J. Virol. 86, 705–717 (2012). (PMID: 22072756325585510.1128/JVI.00742-11)
Yamane, K. et al. Diisopropylamine dichloroacetate, a novel pyruvate dehydrogenase kinase 4 inhibitor, as a potential therapeutic agent for metabolic disorders and multiorgan failure in severe influenza. PLoS ONE 9, 1113 (2014). (PMID: 10.1371/journal.pone.0098032)
Seifert, L. L. et al. The ETS transcription factor ELF1 regulates a broadly antiviral program distinct from the type I interferon response. PLOS Pathog. 15, e1007634 (2019). (PMID: 31682641693281510.1371/journal.ppat.1007634)
Ren, L. et al. Influenza A virus (H1N1) triggers a hypoxic response by stabilizing hypoxia-inducible factor-1α via inhibition of proteasome. Virology 530, 51–58 (2019). (PMID: 3078012510.1016/j.virol.2019.02.010)
Guo, X. et al. Nuclear translocation of HIF-1α induced by influenza A (H1N1) infection is critical to the production of proinflammatory cytokines. Emerg. Microbes Infect. 6, 1–8 (2017). (PMID: 10.1038/emi.2017.21)
Zhao, C. et al. Deficiency of HIF-1α enhances influenza A virus replication by promoting autophagy in alveolar type II epithelial cells. Emerg. Microbes Infect. 9, 691–706 (2020). (PMID: 32208814714423810.1080/22221751.2020.1742585)
Konno, H. et al. TRAF6 establishes innate immune responses by activating NF-κB and IRF7 upon sensing cytosolic viral RNA and DNA. PLoS ONE 4, e5674 (2009). (PMID: 19479062268256710.1371/journal.pone.0005674)
Sjaastad, L. E. et al. Distinct antiviral signatures revealed by the magnitude and round of influenza virus replication in vivo. Proc. Natl. Acad. Sci. 115, 9610–9615 (2018). (PMID: 30181264615662910.1073/pnas.1807516115)
Wang, C. et al. Cell-to-cell variation in defective virus expression and effects on host responses during influenza virus infection. mBio 11, 1298 (2020). (PMID: 10.1128/mBio.02880-19)
Huang, Y. et al. Transcriptomic analyses reveal new genes and networks response to H5N1 influenza viruses in duck (Anas platyrhynchos). J. Integr. Agric. 18, 1460–1472 (2019). (PMID: 10.1016/S2095-3119(19)62646-8)
Huang, X. et al. Determination of antiviral action of long non-coding RNA loc107051710 during infectious bursal disease virus infection due to enhancement of interferon production. Virulence 11, 68–79 (2020). (PMID: 3186585010.1080/21505594.2019.1707957)
Hudson, W. H. et al. Expression of novel long noncoding RNAs defines virus-specific effector and memory CD8 + T cells. Nat. Commun. 10, 196 (2019). (PMID: 30643116633160310.1038/s41467-018-07956-7)
Fratti, R. A., Backer, J. M., Gruenberg, J., Corvera, S. & Deretic, V. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J. Cell Biol. 154, 631–644 (2001). (PMID: 11489920219643210.1083/jcb.200106049)
Malik, Z. A. et al. Cutting edge: mycobacterium tuberculosis blocks Ca signaling and phagosome maturation in human macrophages via specific inhibition of sphingosine kinase. J. Immunol. 170, 2811–2815 (2003). (PMID: 1262653010.4049/jimmunol.170.6.2811)
Fratti, R. A., Chua, J. & Deretic, V. Induction of p38 mitogen-activated protein kinase reduces early endosome autoantigen 1 (EEA1) recruitment to phagosomal membranes. J. Biol. Chem. 278, 46961–46967 (2003). (PMID: 1296373510.1074/jbc.M305225200)
Baharom, F. et al. Visualization of early influenza A virus trafficking in human dendritic cells using STED microscopy. PLOS ONE 12, e0177920 (2017). (PMID: 28591131546235710.1371/journal.pone.0177920)
Song, X. et al. Analysing the relationship between lncRNA and protein-coding gene and the role of lncRNA as ceRNA in pulmonary fibrosis. J. Cell. Mol. Med. 18, 991–1003 (2014). (PMID: 24702795450814010.1111/jcmm.12243)
Fullam, A. & Schröder, M. DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. Biochim. Biophys. Acta BBA-Gene Regul. Mech. 1829, 854–865 (2013). (PMID: 10.1016/j.bbagrm.2013.03.012)
Lai, M.-C., Sun, H. S., Wang, S.-W. & Tarn, W.-Y. DDX3 functions in antiviral innate immunity through translational control of PACT. FEBS J. 283, 88–101 (2016). (PMID: 2645400210.1111/febs.13553)
Perčulija, V. & Ouyang, S. Diverse roles of DEAD/DEAH-box helicases in innate immunity and diseases. Helicases Domains Life https://doi.org/10.1016/B978-0-12-814685-9.00009-9 (2019). (PMID: 10.1016/B978-0-12-814685-9.00009-9)
Taschuk, F. & Cherry, S. DEAD-box helicases: sensors, regulators, and effectors for antiviral defense. Viruses 12, 1956 (2020). (PMID: 10.3390/v12020181)
Oshiumi, H. et al. DDX60 Is involved in RIG-I-dependent and independent antiviral responses, and its function is attenuated by virus-induced EGFR activation. Cell Rep. 11, 1193–1207 (2015). (PMID: 2598104210.1016/j.celrep.2015.04.047)
Diot, C. et al. Influenza A virus polymerase recruits the RNA helicase DDX19 to promote the nuclear export of viral mRNAs. Sci. Rep. 6, 33763 (2016). (PMID: 27653209503757510.1038/srep33763)
Lorgeoux, R.-P., Guo, F. & Liang, C. From promoting to inhibiting: diverse roles of helicases in HIV-1 replication. Retrovirology 9, 79 (2012). (PMID: 23020886348404510.1186/1742-4690-9-79)
Ma, J. et al. The requirement of the DEAD-box protein DDX24 for the packaging of human immunodeficiency virus type 1 RNA. Virology 375, 253–264 (2008). (PMID: 1828962710.1016/j.virol.2008.01.025)
Xu, L. et al. The cellular RNA helicase DDX1 interacts with coronavirus nonstructural protein 14 and enhances viral replication. J. Virol. 84, 8571–8583 (2010). (PMID: 20573827291898510.1128/JVI.00392-10)
Xu, Z., Anderson, R. & Hobman, T. C. The capsid-binding nucleolar helicase DDX56 is important for infectivity of West Nile virus. J. Virol. 85, 5571–5580 (2011). (PMID: 21411523309497810.1128/JVI.01933-10)
Marques, M., Ramos, B., Soares, A. R. & Ribeiro, D. Cellular proteostasis during influenza A virus infection—friend or foe?. Cells 8, 569 (2019). (PMID: 10.3390/cells8030228)
Bolhassani, A. & Agi, E. Heat shock proteins in infection. Clin. Chim. Acta 498, 90–100 (2019). (PMID: 3143744610.1016/j.cca.2019.08.015)
Binder, R. J. Functions of heat shock proteins in pathways of the innate and adaptive immune system. J. Immunol. 193, 5765–5771 (2014). (PMID: 2548095510.4049/jimmunol.1401417)
Wieten, L. et al. A novel heat-shock protein coinducer boosts stress protein Hsp70 to activate T cell regulation of inflammation in autoimmune arthritis. Arthritis Rheum. 62, 1026–1035 (2010). (PMID: 2013127210.1002/art.27344)
Watanabe, K. et al. Identification of Hsc70 as an influenza virus matrix protein (M1) binding factor involved in the virus life cycle. FEBS Lett. 580, 5785–5790 (2006). (PMID: 1702297710.1016/j.febslet.2006.09.040)
Döhner, K. & Sodeik, B. The Role of the Cytoskeleton During Viral Infection. in Membrane Trafficking in Viral Replication (ed. Marsh, M.) 67–108 (Springer, 2005). https://doi.org/10.1007/3-540-26764-6_3 .
Walsh, D. & Naghavi, M. H. Exploitation of cytoskeletal networks during early viral infection. Trends Microbiol. 27, 39–50 (2019). (PMID: 3003334310.1016/j.tim.2018.06.008)
Archibald, J. M., Logsdon, J. M. Jr. & Doolittle, W. F. Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes. Mol. Biol. Evol. 17, 1456–1466 (2000). (PMID: 1101815310.1093/oxfordjournals.molbev.a026246)
Frydman, J. et al. Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J. 11, 4767–4778 (1992). (PMID: 136117055695210.1002/j.1460-2075.1992.tb05582.x)
Grantham, J., Ruddock, L. W., Roobol, A. & Carden, M. J. Eukaryotic chaperonin containing T-complex polypeptide 1 interacts with filamentous actin and reduces the initial rate of actin polymerization in vitro. Cell Stress Chaperones 7, 235–242 (2002). (PMID: 1248219951482310.1379/1466-1268(2002)007<0235:ECCTCP>2.0.CO;2)
Everitt, A. R. et al. IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484, 519–523 (2012). (PMID: 22446628364878610.1038/nature10921)
Zhao, C., Hsiang, T.-Y., Kuo, R.-L. & Krug, R. M. ISG15 conjugation system targets the viral NS1 protein in influenza A virus–infected cells. Proc. Natl. Acad. Sci. 107, 2253–2258 (2010). (PMID: 20133869283665510.1073/pnas.0909144107)
dos Santos, P. F. & Mansur, D. S. Beyond ISGlylation: functions of free intracellular and extracellular ISG15. J. Interferon Cytokine Res. 37, 246–253 (2017). (PMID: 2846727510.1089/jir.2016.0103)
Hale, B. G., Randall, R. E., Ortín, J. & Jackson, D. The multifunctional NS1 protein of influenza A viruses. J. Gen. Virol. 89, 2359–2376 (2008). (PMID: 1879670410.1099/vir.0.2008/004606-0)
Emam, M. et al. Transcriptomic profiles of monocyte-derived macrophages in response to Escherichia coli is associated with the host genetics. Sci. Rep. 10, 271 (2020). (PMID: 31937813695928810.1038/s41598-019-57089-0)
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). (PMID: 24695404410359010.1093/bioinformatics/btu170)
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 2310488610.1093/bioinformatics/bts635)
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf. 12, 323 (2011). (PMID: 10.1186/1471-2105-12-323)
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 25516281430204910.1186/s13059-014-0550-8)
Chen, H. & Boutros, P. C. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinf. 12, 35 (2011). (PMID: 10.1186/1471-2105-12-35)
Substance Nomenclature:
0 (Heat-Shock Proteins)
0 (RNA, Messenger)
9008-11-1 (Interferons)
Entry Date(s):
Date Created: 20211015 Date Completed: 20220127 Latest Revision: 20230207
Update Code:
20240104
PubMed Central ID:
PMC8517014
DOI:
10.1038/s41598-021-99182-3
PMID:
34650121
Czasopismo naukowe
Influenza viruses cause severe respiratory infections in humans and birds, triggering global health concerns and economic burden. Influenza infection is a dynamic process involving complex biological host responses. The objective of this study was to illustrate global biological processes in ileum and cecal tonsils at early time points after chickens were infected with low pathogenic avian influenza virus (LPAIV) H9N2 through transcriptome analysis. Total RNA isolated from ileum and cecal tonsils of non-infected and infected layers at 12-, 24- and 72-h post-infection (hpi) was used for mRNA sequencing analyses to characterize differentially expressed genes and overrepresented pathways. Statistical analysis highlighted transcriptomic signatures significantly occurring 24 and 72 hpi, but not earlier at 12 hpi. Interferon (IFN)-inducible and IFN-stimulated gene (ISG) expression was increased, followed by continued expression of various heat-shock proteins (HSP), including HSP60, HSP70, HSP90 and HSP110. Some upregulated genes involved in innate antiviral responses included DDX60, MX1, RSAD2 and CMPK2. The ISG15 antiviral mechanism pathway was highly enriched in ileum and cecal tonsils at 24 hpi. Overall, most affected pathways were related to interferon production and the heat-shock response. Research on these candidate genes and pathways is warranted to decipher underlying mechanisms of immunity against LPAIV in chickens.
(© 2021. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies