Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Assessing population-sampling strategies for reducing the COVID-19 incidence.

Tytuł:
Assessing population-sampling strategies for reducing the COVID-19 incidence.
Autorzy:
Guzmán-Merino M; Universidad Carlos III de Madrid, Leganes, Spain.
Durán C; Universidad Carlos III de Madrid, Leganes, Spain.
Marinescu MC; Barcelona Supercomputing Center, Barcelona, Spain.
Delgado-Sanz C; CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain.
Gomez-Barroso D; CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain.
Carretero J; Universidad Carlos III de Madrid, Leganes, Spain.
Singh DE; Universidad Carlos III de Madrid, Leganes, Spain. Electronic address: .
Źródło:
Computers in biology and medicine [Comput Biol Med] 2021 Dec; Vol. 139, pp. 104938. Date of Electronic Publication: 2021 Oct 12.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: New York : Elsevier
Original Publication: New York, Pergamon Press.
MeSH Terms:
COVID-19*
Humans ; Incidence ; SARS-CoV-2 ; Spain/epidemiology
References:
Science. 2006 Apr 21;312(5772):447-51. (PMID: 16574822)
Comput Biol Med. 2021 Aug;135:104579. (PMID: 34171641)
Nat Commun. 2021 Jan 7;12(1):356. (PMID: 33414470)
Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17513-17515. (PMID: 32632012)
Nature. 2021 Jan;589(7841):276-280. (PMID: 33086375)
Nat Med. 2020 Sep;26(9):1417-1421. (PMID: 32665655)
Nature. 2020 Aug;584(7820):257-261. (PMID: 32512579)
Nat Commun. 2021 Jan 12;12(1):323. (PMID: 33436609)
J Infect. 2020 Sep;81(3):452-482. (PMID: 32562790)
Nonlinear Dyn. 2020;101(3):1921-1932. (PMID: 32904917)
PLoS Comput Biol. 2021 Jul 12;17(7):e1009146. (PMID: 34252083)
BMC Syst Biol. 2011;5 Suppl 3:S14. (PMID: 22784620)
BMJ. 2020 Oct 28;371:m3582. (PMID: 33115726)
Clin Infect Dis. 2020 Nov 19;71(16):2073-2078. (PMID: 32358960)
PLoS Comput Biol. 2021 Jul 26;17(7):e1009149. (PMID: 34310589)
Lancet. 2020 Aug 22;396(10250):535-544. (PMID: 32645347)
Infect Dis Model. 2020 Apr 28;5:309-315. (PMID: 32346663)
Clin Infect Dis. 2021 Jul 30;73(Suppl 2):S146-S163. (PMID: 32894747)
J Infect. 2020 Sep;81(3):411-419. (PMID: 32504743)
Front Public Health. 2021 Mar 16;9:636023. (PMID: 33796497)
Comput Biol Med. 2020 Jun;121:103827. (PMID: 32568667)
Elife. 2021 Feb 05;10:. (PMID: 33543709)
PLoS One. 2020 Dec 3;15(12):e0242956. (PMID: 33270713)
Nat Med. 2021 Jan;27(1):94-105. (PMID: 33097835)
Clin Infect Dis. 2021 May 4;72(9):e394-e396. (PMID: 32687198)
Contributed Indexing:
Keywords: Agent-based simulation; Contact matrices; SARS-CoV-2(COVID-19); Sampling strategies; Social model
Entry Date(s):
Date Created: 20211022 Date Completed: 20211208 Latest Revision: 20231108
Update Code:
20240105
PubMed Central ID:
PMC8507586
DOI:
10.1016/j.compbiomed.2021.104938
PMID:
34678482
Czasopismo naukowe
As long as critical levels of vaccination have not been reached to ensure heard immunity, and new SARS-CoV-2 strains are developing, the only realistic way to reduce the infection speed in a population is to track the infected individuals before they pass on the virus. Testing the population via sampling has shown good results in slowing the epidemic spread. Sampling can be implemented at different times during the epidemic and may be done either per individual or for combined groups of people at a time. The work we present here makes two main contributions. We first extend and refine our scalable agent-based COVID-19 simulator to incorporate an improved socio-demographic model which considers professions, as well as a more realistic population mixing model based on contact matrices per country. These extensions are necessary to develop and test various sampling strategies in a scenario including the 62 largest cities in Spain; this is our second contribution. As part of the evaluation, we also analyze the impact of different parameters, such as testing frequency, quarantine time, percentage of quarantine breakers, or group testing, on sampling efficacy. Our results show that the most effective strategies are pooling, rapid antigen test campaigns, and requiring negative testing for access to public areas. The effectiveness of all these strategies can be greatly increased by reducing the number of contacts for infected individual.
(Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies