Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Characterization, source apportionment and risk assessment of PAHs in urban surface dust in Shenyang city, China.

Tytuł:
Characterization, source apportionment and risk assessment of PAHs in urban surface dust in Shenyang city, China.
Autorzy:
Wang H; Key Laboratory of Regional Environmental and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, 110044, People's Republic of China. .; School for Resource and Environmental Studies, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .
Chen Z; Key Laboratory of Regional Environmental and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, 110044, People's Republic of China.
Walker TR; School for Resource and Environmental Studies, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
Wang Y; Key Laboratory of Regional Environmental and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, 110044, People's Republic of China.
Luo Q; Key Laboratory of Regional Environmental and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, 110044, People's Republic of China.
Wu H; Key Laboratory of Regional Environmental and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, 110044, People's Republic of China.
Wang X; Key Laboratory of Regional Environmental and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, 110044, People's Republic of China.
Źródło:
Environmental geochemistry and health [Environ Geochem Health] 2022 Oct; Vol. 44 (10), pp. 3639-3654. Date of Electronic Publication: 2021 Oct 23.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 1999- : Dordrecht : Kluwer Academic Publishers
Original Publication: Kew, Surrey : Science and Technology Letters, 1985-
MeSH Terms:
Dust*/analysis
Polycyclic Aromatic Hydrocarbons*/analysis
Polycyclic Aromatic Hydrocarbons*/toxicity
Adolescent ; Adult ; Child ; China ; Environmental Monitoring/methods ; Humans ; Natural Gas ; Pyrenes ; Risk Assessment
References:
Abbasnejad, B., Keshavarzi, B., Mohammadi, Z., Moore, F., & Abbasnejad, A. (2019). Characteristics, distribution, source apportionment, and potential health risk assessment of polycyclic aromatic hydrocarbons in urban street dust of Kerman metropolis Iran. International Journal Environment Health Research, 29(6), 668–685.
Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., & Moreno, T. (2009). Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmospheric Environment, 43(9), 1650–1659.
Baek, S., Field, R., Goldstone, M., Kirk, P., Lester, J., & Perry, R. (1991). A review of atmospheric polycyclic aromatic hydrocarbons: Sources, fate and behavior. Water, Air, and Soil Pollution, 60(3–4), 279–300.
Ball, J. E., Jenks, R., & Aubourg, D. (1998). An assessment of the availability of pollutant constituents on road surfaces. Science of the Total Environment, 209(2–3), 243–254.
Baumann, K., Jayanty, R. K. M., & Flanagan, J. B. (2008). Fine particulate matter source apportionment for the chemical speciation trends network site at Birmingham Alabama using positive matrix factorization. J. Air Waste Manage., 58(1), 27–44.
Dahle, S., Savinov, V. M., Matishov, G. G., Evenset, A., & Næs, K. (2003). Polycyclic aromatic hydrocarbons (PAHs) in bottom sediments of the kara sea shelf, Gulf of Ob and yenisei bay. Science of the Total Environment, 306(1), 57–71.
Davis, E., Walker, T. R., Adams, M., & Willis, R. (2018). Characterization of polycyclic aromatic hydrocarbons (PAHs) in small craft harbour (SCH) sediments in nova scotia Canada. Marine Pollution Bulletin, 137, 285–294.
Davis, E., Walker, T. R., Adams, M., Willis, R., Norris, G. A., & Henry, R. C. (2019a). Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in small craft harbor (SCH) surficial sediments in Nova Scotia Canada. Science Total Environment, 691, 528–537.
Davis, E., Walker, T. R., Adams, M., & Willis, R. (2019b). Estimating PAH sources in harbor sediments using diagnostic ratios. Remediation Journal, 29(3), 51–62.
Ding, H. X., Tao, X. M., Ma, K. J., & Li, D. D. (2018). The study on PAHs of atmospheric dust fall in Lanzhou city. Gansu Science and Technology, 34(13), 20–23. (in Chinese).
Dong, T. T. T., & Lee, B. K. (2009). Characteristics, toxicity, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere, 74, 1245–1253.
Du, J. J., & Jing, C. Y. (2018). Anthropogenic PAHs in lake sediments: A literature review (2002–2018). Environment Science-Processes and Impacts, 20, 1649–1666.
Duan, X., Liu, J., Zhang, D., Yin, P., Li, Y., & Li, X. (2015). An assessment of human influences on sources of polycyclic aromatic hydrocarbons in the estuarine and coastal sediments of China. Marine Pollution Bulletin, 97, 309–318.
Fang, C. S., Wang, S. Y., Yang, S. M., Wen, Z., & Wang, J. (2015). Source apportionment for atmospheric PM10 in Changchun with PMF and PCA model. Environmental Science & Technology, 38(8), 17–21. (in Chinese).
Fernandes, M. B., Sicre, M. A., Boireau, A., & Tronczynski, J. (1997). Polyaromatic hydrocarbon (PAH) distributions in the seine river and its estuary. Marine Pollution Bulletin, 34(11), 857–867.
Galarneau, E. (2008). Source specificity and atmospheric processing of airborne PAHs: Implications for source apportionment. Atmospheric Environment, 42(35), 8139–8149.
Gope, M., Masto, R. E., George, J., & Balachandran, S. (2018). Exposure and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the street dust of Asansol city. India Sustainable Cities and Society, 38, 616–626.
Guo, J., Wu, F., Luo, X., Liang, Z., Liao, H., Zhang, R., Li, W., Zhao, X., Chen, S., & Mai, B. (2010). Anthropogenic input of polycyclic aromatic hydrocarbons into five lakes in Western China. Environmental Pollution, 158, 2175–2180.
Han, D., & Currell, M. J. (2017). Persistent organic pollutants in China’s surface water systems. Science of the Total Environment, 580, 602–625.
Harrison, R. M., Smith, D. J. T., & Luhana, L. (1996). Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham UK. Environment Science Technology, 30(3), 825–832.
Hwang, H. M., Wade, T. L., & Sericano, J. L. (2003). Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States. Atmospheric Environment, 37(16), 2259–2267.
Jiang, Y. F., Yves, U. J., Sun, H., Hu, X. F., Zhan, H. Y., & Wu, Y. Q. (2016). Distribution, compositional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou China. Ecotoxicology Environment Safety, 126, 154–162.
Jiang, X.H., 2016. Calculate and predict the exhaust emissions from motor vehicle pollution of Shenyang Province. Harbin Normal University, Herbin, China. Master Thesis.
Kavouras, I. G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephanou, E. G., Von Baer, D., & Oyola, P. (2001). Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environmental Science and Technology, 35(11), 2288–2294.
Keshavarzi, B., Abbasi, S., Moore, F., Delshab, H., & Soltani, N. (2020). Polycyclic aromatic hydrocarbons in street dust of bushehr city, Iran: Status, source, and human health risk assessment. Polycyclic Aromatic Compounds, 40(1), 61–75.
Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29(4), 533–542.
Kwon, H. O., & Choi, S. D. (2014). Polycyclic aromatic hydrocarbons (PAHs) in soils from a multi-industrial city South Korea. Science of the Total Environment, 470–471(2), 1494–1501.
Lang, Y. H., Li, G. L., Wang, X. M., Peng, P., & Bai, J. (2015). Combination of unmix and positive matrix factorization model identifying contributions to carcinogenicity and mutagenicity for polycyclic aromatic hydrocarbons sources in Liaohe Delta reed wetland soils, China. Chemosphere, 120, 431–437.
Larsen, R. K., & Baker, J. E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods. Environmental Science and Technology, 37(9), 1873–1881.
Li, Y., Zhang, L., Hou, W., Li, Y., & Li, X. (2015). Research on content, distribution and health risk assessment of PAHs in surface dust in Shenyang city. Nature, Environment and Pollution Technology, 14(3), 721–726.
Li, Y., Song, N., Yu, Y., Yang, Z., & Shen, Z. (2017). Characteristics of PAHs in street dust of Beijing and the annual wash-off load using an improved load calculation method. Science of the Total Environment, 581–582, 328–336.
Liaoning Provincial Bureau of Statistics, Liaoning investigation team of National Bureau of Statistics. (2016). Liaoning statistical yearbook 2016. China Statistical Press.
Liaoning Provincial Bureau of Statistics, Liaoning investigation team of National Bureau of Statistics. (2019). Liaoning statistical yearbook 2019. China Statistical Press.
Liaoning Provincial Bureau of Statistics, Liaoning investigation team of National Bureau of Statistics. (2020). Liaoning statistical yearbook 2020. China Statistical Press.
Liu, Y., Chen, L., Jianfu, Z., Qinghui, H., Zhiliang, Z., & Hongwen, G. (2008). Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of rivers and an estuary in Shanghai China. Environment Pollution, 154, 298–305.
Liu, E., Yan, T., Birch, G., & Zhu, Y. (2014). Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Science of the Total Environment, 476, 522–531.
Liu, W., Ma, L., Abuduwaili, J., & Li, Y. (2017). Distribution, source analysis, and ecological risk assessment of polycyclic aromatic hydrocarbons in the typical topsoil of the IssykKul Lake Basin. Environmental Monitoring and Assessment, 189(8), 398.
Liu, T., Zhou, W., & Cao, Y. G. (2018). Distribution of functional areas and population activities in Shenyang city. Journal of Geo-Information Science, 20(7), 988–995. (in Chinese).
Liu, C.X., 2016. Research on Energy consumption strategy in Shenyang. Shenyang Jianzhu University, Shenyang, China. Master Thesis.
Luo, Q., Gu, L., Shan, Y., Wang, H., & Sun, L. (2020). Distribution, source apportionment, and health risk assessment of polycyclic aromatic hydrocarbons in urban soils from Shenyang China. Environment Geochemistry Health, 42, 1817–1832.
Ma, C. L., Ye, S. Y., Lin, T., Ding, X., Yuan, H., & Guo, Z. (2014). Source apportionment of polycyclic aromatic hydrocarbons in soils of wetlands in the Liao river delta Northeast China. Marine Pollution Bulltin, 80(1–2), 160–167.
MacAskill, N. D., Walker, T. R., Oakes, K., & Walsh, M. (2016). Forensic assessment of polycyclic aromatic hydrocarbons at the former Sydney Tar Ponds and surrounding environment using fingerprint techniques. Environmental Pollution, 212, 166–177.
Malcolm, H., & Dobson, S. (1994). The calculation of an Environmental Assessment Level (EAL) for atmospheric PAHs using relative potencies. Department of the Environment.
Najmeddin, A., & Keshavarzi, B. (2019). Health risk assessment and source apportionment of polycyclic aromatic hydrocarbons associated with PM 10 and road deposited dust in Ahvaz metropolis of Iran. Environment Geochemistry Health, 41, 1267–1290.
Nguyen, T. C., Loganathan, P., Nguyen, T. V., Vigneswaran, S., Kandasamy, J., Slee, D., Stevenson, G., & Naidu, R. (2014). Polycyclic aromatic hydrocarbons in road-deposited sediments, water sediments, and soils in Sydney, Australia: Comparisons of concentration distribution, sources and potential toxicity. Ecotoxicology and Environmental Safety, 104, 339–348.
Nisbet, I. C., & LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290–300.
Paatero, P. (1997). Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Sysyem, 37(1), 23–35.
Paatero, P., & Tapper, U. (1993). Analysis of different modes of factor analysis as least squares fit problem. Chemometrics and Intelligent Laboratory System, 18, 183–194.
Paatero, P., & Tapper, U. (1994). Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2), 111–126.
Pandey, P. K., Patel, K. S., & Lenicek, J. (1999). Polycyclic aromatic hydrocarbons: Need for assessment of health risks in India? Study of an urban-industrial location in India. Environmental Monitoring and Assessment, 59(3), 287–319.
Park, S. S., Kim, Y. J., & Kang, C. H. (2002). Atmospheric polycyclic aromatic hydrocarbons in Seoul Korea. Atmospheric Environment, 36(17), 2917–2924.
Polissar, A. V., Hopke, P. K., & Poirot, R. L. (2001). Atmospheric aerosol over Vermont: Chemical composition and sources. Environmental Science and Technology, 35(23), 4604–4621.
Rahmanpoor, S., Ghafourian, H., Hashtroudi, S. M., & Bastami, K. D. (2014). Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of Hormuz strait, Persian Gulf. Marine Pollution Bulletin, 78, 224–229.
Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921.
Ren, W. X., Geng, Y., Ma, Z. X., Sun, L. N., Xue, B., & Fujita, T. (2014). Reconsidering brownfield redevelopment strategy in China’s old industrial zone: A health risk assessment of heavy metal contamination. Environmental Science and Pollution Research, 22(4), 2765–2775.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. (1993a). Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environment Science Technology, 27(4), 636–651.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1993b). Sources of fine organic aerosol. 3. road dust, tire debris, and organometallic brake lining dust: Roads as sources and sinks. Environment Science and Technology, 27(9), 1892–1904.
Saha, M., Togo, A., Mizukawa, K., Murakami, M., Takada, H., Zakaria, M. P., Chiem, N. H., Tuyen, B. C., Prudente, M., Boonyatumanond, R., Sarkar, S. K., Bhattacharya, B., Mishra, P., & Tana, T. S. (2009). Sources of sedimentary PAHs in tropical Asian waters: Differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance. Marine Pollution Bulletin, 58, 189–200.
Sarigiannis, D. A., Karakitsios, S. P., Zikopoulos, D., Nikolaki, S., & Kermenidou, M. (2015). Lung cancer risk from PAHs emitted from biomass combustion. Environmental Research, 137, 147–156.
Sun, Y. B., Sun, G. H., Zhou, Q. X., Xu, Y. M., Wang, L., Liang, X. F., Sun, Y., & Qin, X. (2012). Polycyclic aromatic hydrocarbon (PAH) contamination in the urban topsoils of Shenyang China. Soil and Sedimen Contamination: An International Journal, 21(8), 901–917.
Sun, L. N., Geng, Y., Sarkis, J., Yang, M. M., Xi, F. M., Zhang, Y. H., Xue, B., Luo, Q., Ren, W. X., & Bao, T. (2013). Measurement of polycyclic aromatic hydrocarbons (PAHs) in a Chinese brownfield redevelopment site: The case of Shenyang. Ecological Engineering, 53, 115–119.
Tao, S., Wang, W. T., Liu, W. X., Zuo, Q., Wang, X. L., Wang, R., Wang, B., Shen, G. F., Yang, Y. H., & He, J. S. (2011). Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface soils from the Qinghai-Tibetan plateau. Journal of Environmental Monitoring, 13(11), 175–181.
Tobiszewski, M., & Namies´nik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119.
USEPA., 2004. Risk assessment guidance for superfund: Vol. I. Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). EPA/540/R/99/005. Retrieved February 10, 2019 from http://www.epa.gov/superfund/programs/risk/rages/index.html .
USEPA., 2011. Exposure factors handbook 2011 Edition. Washington, DC: U.S. Environmental Protection Agency. EPA/600/R-09/052F. Retrieved February 12, 2019 from http://www.epa.gov/ncea/efh/pdfs/efh-complete.pdf .
USEPA., 2014. EPA Appendix a to 40 CFR, Part 423–126 Priority Pollutants. Retrieved from. http://water.epa.gov/scitech/methods/cwa/pollutants.cfm .
Viñas, L., Franco, M.A., Soriano, J.A., González, J.J., Pon, J., Albaigés, J., 2010. Sources and distribution of polycyclic aromatic hydrocarbons in sediments from the Spanish northern continental shelf. Assessment of spatial and temporal trends. Environ. Pollut. 158(5), 1551–1560.
Vo-Dinh, T., Fetzer, J., & Campiglia, A. D. (1998). Monitoring and characterization of polyaromatic compounds in the environment. Talanta, 47(4), 943–969.
Wang, W., Huang, M. J., Kang, Y., Wang, H. S., Leung, A. O., Cheung, K. C., & Wong, M. H. (2011). Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. Science of the Total Environment, 409(21), 4519–4527.
Wang, C., Wu, S., Zhou, S. L., Wang, H., Li, B., Chen, H., Yu, Y., & Shi, Y. (2015). Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: Concentration, source, spatial distribution, and potential human health risk. Science of the Total Environment, 527–528, 375–383.
Wang, H., Wang, X., Liu, C., Wang, Y. G., Rong, L. G., & Sun, L. (2017a). In-situ bioremediation of DDTs and PAH contaminated aging farmland soil using blood meal. Soil and Sedimen Contamination: an Internation Journal, 26(6), 623–635.
Wang, J. Z., Cao, J. J., Dong, Z. B., Guinot, B. J. M., Gao, M. L., Huang, R. J., Han, Y., Huang, Y., Ho, S. S. H., & Shen, Z. (2017b). Seasonal variation, spatial distribution and source apportionment for polycyclic aromatic hydrocarbons (PAHs) at nineteen communities in Xi’an, China: The effects of suburban scattered emissions in winter. Environmental Pollution, 231, 1330–1343.
Wang, H., Zhao, Y., Muhammad, A., Liu, C., Luo, Q., Wu, H., Wang, X., Zheng, X., Wang, K., & Du, Y. (2019). Influence of celery on the remediation of PAHs contaminated farm soil. Soil and Sedimen Contamination: an International Journal, 28(2), 200–212.
Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser river basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489–515.
Zhang, W., & Gao, T. (2015). Analysis on the characteristics of precipitation in Shenyang city from 1951 to 2014. Anhui Agriculture Science Bulletin, 21(10), 153–155.
Zhang, Y., Dou, H., Chang, B., Wei, Z., Qiu, W., Liu, S., Liu, W., & Tao, S. (2008). Emission of polycyclic aromatic hydrocarbons from indoor straw burning and emission inventory updating in China. Annals of the New York Academy of Sciences, 1140, 218–227.
Zheng, N., Liu, J. S., Wang, Q. C., & Liang, Z. Z. (2010). Health risk assessment of heavy metal exposure to street dust in the zinc smelting district Northeast of China. Science Total Environment, 408, 726–733.
Zhou, Q.X., Song, Y.F. 2004. Principles and methods of contaminated soil remediation. Beijing: Science Press.
Grant Information:
2019-ZD-0542 natural science foundation of liaoning province of china; 2019-ZD-0541 natural science foundation of liaoning province of china
Contributed Indexing:
Keywords: China; Ecological risk; Health risk assessment; Polycyclic aromatic hydrocarbons (PAHs); Shenyang city; Source apportionment; Urban surface dust
Substance Nomenclature:
0 (Dust)
0 (Natural Gas)
0 (Polycyclic Aromatic Hydrocarbons)
0 (Pyrenes)
Entry Date(s):
Date Created: 20211023 Date Completed: 20221003 Latest Revision: 20221003
Update Code:
20240105
DOI:
10.1007/s10653-021-01134-3
PMID:
34687406
Czasopismo naukowe
Characteristics, profile composition, ecological and human health risk of polycyclic aromatic hydrocarbons in surface dust collected from Shenyang city, China, were investigated. Concentrations of 16 USEPA priority PAHs ranged between 371.57 and 3300.04 μg/kg (mean 1244.76 ± 715.25 μg/kg). Fluoranthene was the most abundant individual PAHs, followed by pyrene, and high molecular weight PAHs, more than three times of low molecular weight PAHs, were the predominant components. Profiles of PAHs showed that 4-ring PAHs were dominant, followed by 3-ring and 5-ring PAHs, and indicated that combustion sources accounted for the most PAHs. Results of diagnostic ratios and positive matrix factorization all suggested that pyrogenic sources were the most important source of PAHs in urban dust, followed by natural gas combustion and petrogenic sources, and traffic emissions would play an increasingly critical role with the increasing of vehicles. Health risk assessment suggested children were the most vulnerable to PAHs compared to adolescents and adults. Ingestion was the most important exposure pathway. The total lifetime cancer risk of 43.33% of sampling sites was higher than 10 -6 , but the TLCR at all sites was much lower than the highest acceptable risk established by USEPA (10 -4 ).
(© 2021. The Author(s), under exclusive licence to Springer Nature B.V.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies