Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Identification of RNA Binding Partners of CRISPR-Cas Proteins in Prokaryotes Using RIP-Seq.

Tytuł:
Identification of RNA Binding Partners of CRISPR-Cas Proteins in Prokaryotes Using RIP-Seq.
Autorzy:
Sharma S; Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany. .
Sharma CM; Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany. .
Źródło:
Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2022; Vol. 2404, pp. 111-133.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
MeSH Terms:
CRISPR-Cas Systems*/genetics
Gene Editing*
Bacterial Proteins/genetics ; Bacterial Proteins/metabolism ; DNA ; Endonucleases ; RNA/genetics ; RNA, Guide, CRISPR-Cas Systems/genetics
References:
Beckmann BM, Castello A, Medenbach J (2016) The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions. Pflugers Arch 468:1029–1040. https://doi.org/10.1007/s00424-016-1819-4. (PMID: 10.1007/s00424-016-1819-4271652834893068)
Babitzke P, Lai Y-J, Renda AJ, Romeo T (2019) Posttranscription initiation control of gene expression mediated by bacterial RNA-binding proteins. Annu Rev Microbiol 73:43–67. https://doi.org/10.1146/annurev-micro-020518-115907. (PMID: 10.1146/annurev-micro-020518-11590731100987)
Saliba A-E, Santos SC, Vogel J (2017) New RNA-seq approaches for the study of bacterial pathogens. Curr Opin Microbiol 35:78–87. https://doi.org/10.1016/j.mib.2017.01.001. (PMID: 10.1016/j.mib.2017.01.00128214646)
Hör J, Gorski SA, Vogel J (2018) Bacterial RNA biology on a genome scale. Mol Cell 70:785–799. https://doi.org/10.1016/j.molcel.2017.12.023. (PMID: 10.1016/j.molcel.2017.12.02329358079)
Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78. https://doi.org/10.1016/j.mib.2017.05.008. (PMID: 10.1016/j.mib.2017.05.008286057185776717)
Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190. https://doi.org/10.1038/nrg2749. (PMID: 10.1038/nrg2749201250852928866)
van der Oost J, Jore MM, Westra ER et al (2009) CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 34:401–407. https://doi.org/10.1016/j.tibs.2009.05.002. (PMID: 10.1016/j.tibs.2009.05.00219646880)
Hille F, Richter H, Wong SP et al (2018) The biology of CRISPR-Cas: backward and forward. Cell 172:1239–1259. https://doi.org/10.1016/j.cell.2017.11.032. (PMID: 10.1016/j.cell.2017.11.03229522745)
Wright AV, Nuñez JK, Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164:29–44. https://doi.org/10.1016/j.cell.2015.12.035. (PMID: 10.1016/j.cell.2015.12.03526771484)
Mohanraju P, Makarova KS, Zetsche B et al (2016) Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353:aad5147. https://doi.org/10.1126/science.aad5147. (PMID: 10.1126/science.aad514727493190)
Makarova KS, Wolf YI, Iranzo J et al (2020) Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18:67–83. https://doi.org/10.1038/s41579-019-0299-x. (PMID: 10.1038/s41579-019-0299-x31857715)
Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712. https://doi.org/10.1126/science.1138140. (PMID: 10.1126/science.113814017379808)
Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845. https://doi.org/10.1126/science.1165771. (PMID: 10.1126/science.1165771190959422695655)
Terns MP (2018) CRISPR-based technologies: impact of RNA-targeting systems. Mol Cell 72:404–412. https://doi.org/10.1016/j.molcel.2018.09.018. (PMID: 10.1016/j.molcel.2018.09.018303884096239212)
Wang F, Wang L, Zou X et al (2019) Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnol Adv 37:708–729. https://doi.org/10.1016/j.biotechadv.2019.03.016. (PMID: 10.1016/j.biotechadv.2019.03.01630926472)
Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829. (PMID: 10.1126/science.12258292274524922745249)
Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109:E2579–E2586. https://doi.org/10.1073/pnas.1208507109. (PMID: 10.1073/pnas.1208507109229496713465414)
Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529. https://doi.org/10.1146/annurev-biophys-062215-010822. (PMID: 10.1146/annurev-biophys-062215-01082228375731)
Deltcheva E, Chylinski K, Sharma CM et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607. https://doi.org/10.1038/nature09886. (PMID: 10.1038/nature09886214551743070239)
Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–573. https://doi.org/10.1038/nature13579. (PMID: 10.1038/nature13579250793184176945)
Westra ER, Buckling A, Fineran PC (2014) CRISPR-Cas systems: beyond adaptive immunity. Nat Rev Microbiol 12:317–326. https://doi.org/10.1038/nrmicro3241. (PMID: 10.1038/nrmicro324124704746)
Louwen R, Horst-Kreft D, de Boer AG et al (2013) A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barré syndrome. Eur J Clin Microbiol Infect Dis 32:207–226. https://doi.org/10.1007/s10096-012-1733-4. (PMID: 10.1007/s10096-012-1733-422945471)
Hale CR, Majumdar S, Elmore J et al (2012) Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol Cell 45:292–302. https://doi.org/10.1016/j.molcel.2011.10.023. (PMID: 10.1016/j.molcel.2011.10.023222271163278580)
Zegans ME, Wagner JC, Cady KC et al (2009) Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J Bacteriol 191:210–219. https://doi.org/10.1128/JB.00797-08. (PMID: 10.1128/JB.00797-0818952788)
Mandin P, Repoila F, Vergassola M et al (2007) Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Res 35:962–974. https://doi.org/10.1093/nar/gkl1096. (PMID: 10.1093/nar/gkl1096172592221807966)
Vercoe RB, Chang JT, Dy RL et al (2013) Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet 9:e1003454. https://doi.org/10.1371/journal.pgen.1003454. (PMID: 10.1371/journal.pgen.1003454236376243630108)
Babu M, Beloglazova N, Flick R et al (2011) A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol Microbiol 79:484–502. https://doi.org/10.1111/j.1365-2958.2010.07465.x. (PMID: 10.1111/j.1365-2958.2010.07465.x21219465)
Viswanathan P, Murphy K, Julien B et al (2007) Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats. J Bacteriol 189:3738–3750. https://doi.org/10.1128/JB.00187-07. (PMID: 10.1128/JB.00187-07173693051913320)
Gunderson FF, Cianciotto NP (2013) The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae. MBio 4:e00074–e00013. https://doi.org/10.1128/mBio.00074-13. (PMID: 10.1128/mBio.00074-13234816013604779)
Ratner HK, Escalera-Maurer A, Le Rhun A et al (2019) Catalytically active cas9 mediates transcriptional interference to facilitate bacterial virulence. Mol Cell 75:498–510.e5. https://doi.org/10.1016/j.molcel.2019.05.029. (PMID: 10.1016/j.molcel.2019.05.029312569887205310)
Dugar G, Leenay RT, Eisenbart SK et al (2018) CRISPR RNA-dependent binding and cleavage of endogenous RNAs by the Campylobacter jejuni Cas9. Mol Cell 69:893–905.e7. https://doi.org/10.1016/j.molcel.2018.01.032. (PMID: 10.1016/j.molcel.2018.01.032294991395859949)
Strutt SC, Torrez RM, Kaya E et al (2018) RNA-dependent RNA targeting by CRISPR-Cas9. elife. https://doi.org/10.7554/eLife.32724.
Rousseau BA, Hou Z, Gramelspacher MJ, Zhang Y (2018) Programmable RNA cleavage and recognition by a natural CRISPR-Cas9 system from Neisseria meningitidis. Mol Cell 69:906–914.e4. https://doi.org/10.1016/j.molcel.2018.01.025. (PMID: 10.1016/j.molcel.2018.01.025294561895889306)
O’Connell MR, Oakes BL, Sternberg SH et al (2014) Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516:263–266. https://doi.org/10.1038/nature13769. (PMID: 10.1038/nature13769252743024268322)
Nelles DA, Fang MY, O’Connell MR et al (2016) Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165:488–496. https://doi.org/10.1016/j.cell.2016.02.054. (PMID: 10.1016/j.cell.2016.02.054269974824826288)
Zhang A, Wassarman KM, Rosenow C et al (2003) Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50:1111–1124. https://doi.org/10.1046/j.1365-2958.2003.03734.x. (PMID: 10.1046/j.1365-2958.2003.03734.x14622403)
Christiansen JK, Nielsen JS, Ebersbach T et al (2006) Identification of small Hfq-binding RNAs in Listeria monocytogenes. RNA 12:1383–1396. https://doi.org/10.1261/rna.49706. (PMID: 10.1261/rna.49706166825631484441)
Sonnleitner E, Sorger-Domenigg T, Madej MJ et al (2008) Detection of small RNAs in Pseudomonas aeruginosa by RNomics and structure-based bioinformatic tools. Microbiology 154:3175–3187. https://doi.org/10.1099/mic.0.2008/019703-0. (PMID: 10.1099/mic.0.2008/019703-018832323)
Sittka A, Lucchini S, Papenfort K et al (2008) Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet 4:e1000163. https://doi.org/10.1371/journal.pgen.1000163. (PMID: 10.1371/journal.pgen.1000163187259322515195)
Dugar G, Svensson SL, Bischler T et al (2016) The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni. Nat Commun 7:11667. https://doi.org/10.1038/ncomms11667. (PMID: 10.1038/ncomms11667272293704894983)
Rieder R, Reinhardt R, Sharma C, Vogel J (2012) Experimental tools to identify RNA-protein interactions in Helicobacter pylori. RNA Biol 9:520–531. https://doi.org/10.4161/rna.20331. (PMID: 10.4161/rna.2033122546936)
Bilusic I, Popitsch N, Rescheneder P et al (2014) Revisiting the coding potential of the E. coli genome through Hfq co-immunoprecipitation. RNA Biol 11:641–654. https://doi.org/10.4161/rna.29299. (PMID: 10.4161/rna.29299249223224152368)
Göpel Y, Papenfort K, Reichenbach B et al (2013) Targeted decay of a regulatory small RNA by an adaptor protein for RNase E and counteraction by an anti-adaptor RNA. Genes Dev 27:552–564. https://doi.org/10.1101/gad.210112.112. (PMID: 10.1101/gad.210112.112234759613605468)
Heidrich N, Bauriedl S, Schoen C (2019) Investigating RNA-Protein interactions in Neisseria meningitidis by RIP-Seq analysis. Methods Mol Biol 1969:33–49. https://doi.org/10.1007/978-1-4939-9202-7_3. (PMID: 10.1007/978-1-4939-9202-7_330877668)
Heidrich N, Bauriedl S, Barquist L et al (2017) The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq. Nucleic Acids Res 45:6147–6167. https://doi.org/10.1093/nar/gkx168. (PMID: 10.1093/nar/gkx168283348895449619)
Michaux C, Holmqvist E, Vasicek E et al (2017) RNA target profiles direct the discovery of virulence functions for the cold-shock proteins CspC and CspE. Proc Natl Acad Sci U S A 114:6824–6829. https://doi.org/10.1073/pnas.1620772114. (PMID: 10.1073/pnas.1620772114286112175495234)
Gerovac M, El Mouali Y, Kuper J et al (2020) Global discovery of bacterial RNA-binding proteins by RNase-sensitive gradient profiles reports a new FinO domain protein. RNA 26:1448–1463. https://doi.org/10.1261/rna.076992.120. (PMID: 10.1261/rna.076992.120326469697491321)
Zhang J, Rouillon C, Kerou M et al (2012) Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol Cell 45:303–313. https://doi.org/10.1016/j.molcel.2011.12.013. (PMID: 10.1016/j.molcel.2011.12.013222271153381847)
Brunelle JL, Green R (2014) One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods Enzymol 541:151–159. https://doi.org/10.1016/B978-0-12-420119-4.00012-4. (PMID: 10.1016/B978-0-12-420119-4.00012-424674069)
Brown T, Mackey K, Du T (2004) Analysis of RNA by northern and slot blot hybridization. Curr Protoc Mol Biol Chapter 4:Unit 4.9. https://doi.org/10.1002/0471142727.mb0409s67. (PMID: 10.1002/0471142727.mb0409s6718265351)
He SL, Green R (2013) Northern blotting. Methods Enzymol 530:75–87. https://doi.org/10.1016/B978-0-12-420037-1.00003-8. (PMID: 10.1016/B978-0-12-420037-1.00003-8240343154287216)
Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26. https://doi.org/10.1038/nbt.1754. (PMID: 10.1038/nbt.17542122109521221095)
Freese NH, Norris DC, Loraine AE (2016) Integrated genome browser: visual analytics platform for genomics. Bioinformatics 32:2089–2095. https://doi.org/10.1093/bioinformatics/btw069. (PMID: 10.1093/bioinformatics/btw069271535684937187)
Bailey TL, Boden M, Buske FA et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208. https://doi.org/10.1093/nar/gkp335. (PMID: 10.1093/nar/gkp335194581582703892)
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8. (PMID: 10.1186/s13059-014-0550-82551628125516281)
Li Y, Zhao DY, Greenblatt JF, Zhang Z (2013) RIPSeeker: a statistical package for identifying protein-associated transcripts from RIP-seq experiments. Nucleic Acids Res 41:e94. https://doi.org/10.1093/nar/gkt142. (PMID: 10.1093/nar/gkt142234554763632129)
Uren PJ, Bahrami-Samani E, Burns SC et al (2012) Site identification in high-throughput RNA-protein interaction data. Bioinformatics 28:3013–3020. https://doi.org/10.1093/bioinformatics/bts569. (PMID: 10.1093/bioinformatics/bts569230240103509493)
Mann M, Wright PR, Backofen R (2017) IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res 45:W435–W439. https://doi.org/10.1093/nar/gkx279. (PMID: 10.1093/nar/gkx279284725235570192)
Zadeh JN, Steenberg CD, Bois JS et al (2011) NUPACK: Analysis and design of nucleic acid systems. J Comput Chem 32:170–173. https://doi.org/10.1002/jcc.21596. (PMID: 10.1002/jcc.2159620645303)
Sharma CM, Hoffmann S, Darfeuille F et al (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255. https://doi.org/10.1038/nature08756. (PMID: 10.1038/nature0875620164839)
Heidrich N, Dugar G, Vogel J, Sharma CM (2015) Investigating CRISPR RNA biogenesis and function using RNA-seq. Methods Mol Biol 1311:1–21. https://doi.org/10.1007/978-1-4939-2687-9_1. (PMID: 10.1007/978-1-4939-2687-9_125981463)
Zhang Y, Heidrich N, Ampattu BJ et al (2013) Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell 50:488–503. https://doi.org/10.1016/j.molcel.2013.05.001. (PMID: 10.1016/j.molcel.2013.05.001237068183694421)
Dugar G, Herbig A, Förstner KU et al (2013) High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolates. PLoS Genet 9:e1003495. https://doi.org/10.1371/journal.pgen.1003495. (PMID: 10.1371/journal.pgen.1003495236967463656092)
Melamed S, Peer A, Faigenbaum-Romm R et al (2016) Global Mapping of Small RNA-Target Interactions in Bacteria. Mol Cell 63:884–897. https://doi.org/10.1016/j.molcel.2016.07.026. (PMID: 10.1016/j.molcel.2016.07.026275886045145812)
Waters SA, McAteer SP, Kudla G et al (2017) Small RNA interactome of pathogenic E. coli revealed through crosslinking of RNase E. EMBO J 36:374–387. https://doi.org/10.15252/embj.201694639. (PMID: 10.15252/embj.20169463927836995)
Holmqvist E, Wright PR, Li L et al (2016) Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J 35:991–1011. https://doi.org/10.15252/embj.201593360. (PMID: 10.15252/embj.201593360270449215207318)
Jiao C, Sharma S, Dugar G, et al (2021) Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9. Science 372:941–948. https://doi.org/10.1126/science.abe7106.
Contributed Indexing:
Keywords: CRISPR-Cas; Campylobacter jejuni; Cas9; Next-generation sequencing; Prokaryotes; RNA-immunoprecipitation
Substance Nomenclature:
0 (Bacterial Proteins)
0 (RNA, Guide, CRISPR-Cas Systems)
63231-63-0 (RNA)
9007-49-2 (DNA)
EC 3.1.- (Endonucleases)
Entry Date(s):
Date Created: 20211025 Date Completed: 20211124 Latest Revision: 20240104
Update Code:
20240104
DOI:
10.1007/978-1-0716-1851-6_6
PMID:
34694606
Czasopismo naukowe
CRISPR-Cas systems consist of a complex ribonucleoprotein (RNP) machinery encoded in prokaryotic genomes to confer adaptive immunity against foreign mobile genetic elements. Of these, especially the class 2, Type II CRISPR-Cas9 RNA-guided systems with single protein effector modules have recently received much attention for their application as programmable DNA scissors that can be used for genome editing in eukaryotes. While many studies have concentrated their efforts on improving RNA-mediated DNA targeting with these Type II systems, little is known about the factors that modulate processing or binding of the CRISPR RNA (crRNA) guides and the trans-activating tracrRNA to the nuclease protein Cas9, and whether Cas9 can also potentially interact with other endogenous RNAs encoded within the host genome. Here, we describe RIP-seq as a method to globally identify the direct RNA binding partners of CRISPR-Cas RNPs using the Cas9 nuclease as an example. RIP-seq combines co-immunoprecipitation (coIP) of an epitope-tagged Cas9 followed by isolation and deep sequencing analysis of its co-purified bound RNAs. This method can not only be used to study interactions of Cas9 with its known interaction partners, crRNAs and tracrRNA in native systems, but also to reveal potential additional RNA substrates of Cas9. For example, in RIP-seq analysis of Cas9 from the foodborne pathogen Campylobacter jejuni (CjeCas9), we recently identified several endogenous RNAs bound to CjeCas9 RNP in a crRNA-dependent manner, leading to the discovery of PAM-independent RNA cleavage activity of CjeCas9 as well as non-canonical crRNAs. RIP-seq can be easily adapted to any other effector RNP of choice from other CRISPR-Cas systems, allowing for the identification of target RNAs. Deciphering novel RNA-protein interactions for CRISPR-Cas proteins within host bacterial genomes will lead to a better understanding of the molecular mechanisms and functions of these systems and enable us to use the in vivo identified interaction rules as design principles for nucleic acid-targeting applications, fitted to each nuclease of interest.
(© 2022. The Author(s).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies