Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Lipoprotein size is a main determinant for the rate of hydrolysis by exogenous LPL in human plasma.

Tytuł:
Lipoprotein size is a main determinant for the rate of hydrolysis by exogenous LPL in human plasma.
Autorzy:
Kovrov O; Department of Medical Biosciences, Umeå University, Umeå, Sweden.
Landfors F; Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
Saar-Kovrov V; Department of Medical Biosciences, Umeå University, Umeå, Sweden; Department of Pathology, CARIM School for Cardiovascular Diseases MUMC+, Maastricht University, Maastricht, The Netherlands.
Näslund U; Heart Centre and Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
Olivecrona G; Department of Medical Biosciences, Umeå University, Umeå, Sweden. Electronic address: .
Źródło:
Journal of lipid research [J Lipid Res] 2022 Jan; Vol. 63 (1), pp. 100144. Date of Electronic Publication: 2021 Oct 26.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 2021- : [New York] : Elsevier
Original Publication: Memphis, Lipid Research, inc.
MeSH Terms:
Lipoproteins*
Triglycerides*
References:
Genes Dev. 2013 Mar 1;27(5):459-84. (PMID: 23475957)
Metabolism. 2012 Jul;61(7):906-21. (PMID: 22304839)
Arterioscler Thromb Vasc Biol. 2009 Jun;29(6):969-74. (PMID: 19342599)
J Clin Invest. 2005 Oct;115(10):2694-6. (PMID: 16200205)
Mol Metab. 2017 Oct;6(10):1137-1149. (PMID: 29031715)
Prog Lipid Res. 2004 Jul;43(4):350-80. (PMID: 15234552)
J Biol Chem. 2005 Jul 8;280(27):25383-7. (PMID: 15878877)
Comp Biochem Physiol B. 1987;88(1):187-92. (PMID: 3677597)
J Clin Lipidol. 2018 Jan - Feb;12(1):203-210.e1. (PMID: 29246728)
Biochem Biophys Res Commun. 2012 Aug 24;425(2):138-43. (PMID: 22820186)
FEBS Lett. 1974 Jan 15;38(3):247-58. (PMID: 4368333)
J Lipid Res. 2017 Jun;58(6):1166-1173. (PMID: 28413163)
Atherosclerosis. 2011 Nov;219(1):15-21. (PMID: 21831376)
Curr Vasc Pharmacol. 2012 Jul;10(4):410-21. (PMID: 22339300)
Nat Genet. 2017 Dec;49(12):1758-1766. (PMID: 29083408)
Glob Health Action. 2010 Mar 22;3:. (PMID: 20339479)
J Biol Chem. 2002 Apr 5;277(14):11927-32. (PMID: 11809775)
Biochemistry. 1992 Sep 15;31(36):8544-51. (PMID: 1390640)
J Biol Chem. 2019 Feb 22;294(8):2678-2689. (PMID: 30591589)
J Lipid Res. 2017 Sep;58(9):1893-1902. (PMID: 28694296)
Clin Biochem. 2013 Jan;46(1-2):12-9. (PMID: 23000317)
Biochim Biophys Acta. 2014 Jul;1841(7):919-33. (PMID: 24721265)
J Lipid Res. 2019 Apr;60(4):783-793. (PMID: 30686789)
Circ Cardiovasc Genet. 2015 Feb;8(1):192-206. (PMID: 25691689)
Curr Opin Lipidol. 2018 Jun;29(3):171-179. (PMID: 29547399)
Biochem Biophys Res Commun. 1985 Apr 30;128(2):670-5. (PMID: 3994718)
J Lipid Res. 1999 Sep;40(9):1655-63. (PMID: 10484612)
Genet Epidemiol. 2008 May;32(4):361-9. (PMID: 18271029)
J Biochem. 1984 Dec;96(6):1753-67. (PMID: 6530395)
J Biol Chem. 1994 Aug 12;269(32):20554-60. (PMID: 8051155)
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):E1043-52. (PMID: 24591600)
Eur J Biochem. 1991 Apr 23;197(2):315-21. (PMID: 2026154)
J Lipid Res. 2020 Aug;61(8):1203-1220. (PMID: 32487544)
Biochem Biophys Res Commun. 2004 Jun 25;319(2):397-404. (PMID: 15178420)
Eur J Biochem. 1980 May;106(2):557-62. (PMID: 7398627)
Biochim Biophys Acta. 1984 May 11;793(3):399-407. (PMID: 6712977)
Biochim Biophys Acta. 2012 Oct;1821(10):1370-8. (PMID: 22732211)
Open Biol. 2016 Apr;6(4):150272. (PMID: 27053679)
Curr Opin Lipidol. 2016 Jun;27(3):249-56. (PMID: 27023631)
Methods Enzymol. 1991;197:345-56. (PMID: 2051931)
J Clin Invest. 2016 Aug 1;126(8):2855-66. (PMID: 27400128)
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17450-5. (PMID: 17088546)
Front Pharmacol. 2015 Oct 05;6:218. (PMID: 26500551)
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11630-5. (PMID: 26305978)
Clin Chim Acta. 1995 Apr 30;236(1):7-17. (PMID: 7664467)
J Lipid Res. 1996 Aug;37(8):1685-95. (PMID: 8864952)
Biochem Biophys Res Commun. 1972 Jan 31;46(2):375-82. (PMID: 5057882)
J Biol Chem. 1983 Nov 25;258(22):13772-84. (PMID: 6643453)
JCI Insight. 2018 Mar 22;3(6):. (PMID: 29563332)
J Biol Chem. 1991 Sep 25;266(27):18259-67. (PMID: 1917954)
J Lipid Res. 1993 Sep;34(9):1555-64. (PMID: 8228638)
J Biol Chem. 2013 Nov 22;288(47):33997-34008. (PMID: 24121499)
Biochim Biophys Acta. 2007 Dec;1771(12):1464-8. (PMID: 17997385)
Arterioscler Thromb Vasc Biol. 1999 Mar;19(3):472-84. (PMID: 10073946)
Curr Opin Lipidol. 2019 Jun;30(3):205-211. (PMID: 30893111)
Lancet. 2019 Jan 12;393(10167):133-142. (PMID: 30522919)
Biochemistry. 2003 Feb 25;42(7):1872-89. (PMID: 12590574)
J Biol Chem. 2015 Jul 17;290(29):18029-18044. (PMID: 26026161)
Biochem J. 1992 Oct 15;287 ( Pt 2):337-47. (PMID: 1445192)
Curr Opin Lipidol. 2016 Jun;27(3):233-41. (PMID: 27031275)
J Lipid Res. 2009 Dec;50(12):2421-9. (PMID: 19542565)
J Lipid Res. 2017 Jan;58(1):279-288. (PMID: 27845686)
Prog Lipid Res. 1983;22(1):35-78. (PMID: 6346343)
Elife. 2016 Dec 08;5:. (PMID: 27929370)
J Lipid Res. 1992 Feb;33(2):141-66. (PMID: 1569369)
Arterioscler Thromb Vasc Biol. 2003 Feb 1;23(2):160-7. (PMID: 12588754)
J Lipid Res. 1997 Aug;38(8):1649-59. (PMID: 9300787)
J Biol Chem. 2013 Oct 4;288(40):28524-34. (PMID: 23960078)
Contributed Indexing:
Keywords: VLDL particle size; angiopoietin-like proteins; apolipoproteins; capillaries; exogenous LPL; isothermal titration calorimetry; lipid signature; lipidomics; plasma triglyceride metabolism
Substance Nomenclature:
0 (Lipoproteins)
0 (Triglycerides)
0 (lipoprotein triglyceride)
Entry Date(s):
Date Created: 20211028 Date Completed: 20220323 Latest Revision: 20220401
Update Code:
20240105
PubMed Central ID:
PMC8953621
DOI:
10.1016/j.jlr.2021.100144
PMID:
34710432
Czasopismo naukowe
LPL is a key player in plasma triglyceride metabolism. Consequently, LPL is regulated by several proteins during synthesis, folding, secretion, and transport to its site of action at the luminal side of capillaries, as well as during the catalytic reaction. Some proteins are well known, whereas others have been identified but are still not fully understood. We set out to study the effects of the natural variations in the plasma levels of all known LPL regulators on the activity of purified LPL added to samples of fasted plasma taken from 117 individuals. The enzymatic activity was measured at 25°C using isothermal titration calorimetry. This method allows quantification of the ability of an added fixed amount of exogenous LPL to hydrolyze triglyceride-rich lipoproteins in plasma samples by measuring the heat produced. Our results indicate that, under the conditions used, the normal variation in the endogenous levels of apolipoprotein C1, C2, and C3 or the levels of angiopoietin-like proteins 3, 4, and 8 in the fasted plasma samples had no significant effect on the recorded activity of the added LPL. Instead, the key determinant for the LPL activity was a lipid signature strongly correlated to the average size of the VLDL particles. The signature involved not only several lipoprotein and plasma lipid parameters but also apolipoprotein A5 levels. While the measurements cannot fully represent the action of LPL when attached to the capillary wall, our study provides knowledge on the interindividual variation of LPL lipolysis rates in human plasma.
Competing Interests: Conflict of interest G. O. is a board member and shareholder in Lipigon Pharmaceuticals AB. All other authors declare that they have no conflicts of interest with the contents of this article.
(Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies