Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

From atoms to ecosystems: elementome diversity meets ecosystem functioning.

Tytuł:
From atoms to ecosystems: elementome diversity meets ecosystem functioning.
Autorzy:
Fernández-Martínez M; Research Group PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium.; CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain.; BEECA-UB, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Catalonia, E08028, Spain.
Źródło:
The New phytologist [New Phytol] 2022 Apr; Vol. 234 (1), pp. 35-42. Date of Electronic Publication: 2021 Dec 04.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Review
Język:
English
Imprint Name(s):
Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
MeSH Terms:
Biodiversity*
Ecosystem*
Plants
References:
Ågren GI, Weih M. 2020. Multi-dimensional plant element stoichiometry - looking beyond carbon, nitrogen, and phosphorus. Frontiers in Plant Science 11: e23.
Baek G, Bae EJ, Kim C. 2020. Nutrient stocks of Japanese blue oak (Quercus glauca Thunb.) stands on different soil parent materials. Forest Science and Technology 16: 180-187.
Bai K, Lv S, Ning S, Zeng D, Guo Y, Wang B. 2019. Leaf nutrient concentrations associated with phylogeny, leaf habit and soil chemistry in tropical karst seasonal rainforest tree species. Plant and Soil 434: 305-326.
Balboa-Murias MA, Rojo A, Álvarez JG, Merino A. 2006. Carbon and nutrient stocks in mature Quercus robur L. stands in NW Spain. Annals of Forest Science 63: 557-565.
Cardinale BJ. 2011. Biodiversity improves water quality through niche partitioning. Nature 472: 86-91.
Couturier J, Touraine B, Briat JF, Gaymard F, Rouhier N. 2013. The iron-sulfur cluster assembly machineries in plants: current knowledge and open questions. Frontiers in Plant Science 4: e259.
Craven D, Eisenhauer N, Pearse WD, Hautier Y, Isbell F, Roscher C, Bahn M, Beierkuhnlein C, Bönisch G, Buchmann N et al. 2018. Multiple facets of biodiversity drive the diversity-stability relationship. Nature Ecology and Evolution 2: 1579-1587.
Díaz S, Cabido M. 2001. Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution 16: 646-655.
Ding Y, Nie Y, Chen H, Wang K, Querejeta JI. 2021. Water uptake depth is coordinated with leaf water potential, water-use efficiency and drought vulnerability in karst vegetation. New Phytologist 229: 1339-1353.
Du C, Gao Y. 2021. Grazing exclusion alters ecological stoichiometry of plant and soil in degraded alpine grassland. Agriculture, Ecosystems and Environment 308: e107256.
Duarte CM. 1992. Nutrient concentration of aquatic plants: patterns across species. Limnology and Oceanography 37: 882-889.
Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL et al. 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature 408: 578-580.
Fernández Honaine M, Benvenuto ML, Montti L, Natal M, Borrelli NL, Alvarez MF, Altamirano SM, De Rito M, Osterrieth ML, Fernández Honaine M et al. 2021. How are systematics and biological and ecological features related to silica content in plants? A study of species from southern South America. International Journal of Plant Sciences 182: 210-219.
Fernández-Martínez M, Corbera J, Cano-Rocabayera O, Sabater F, Preece C. 2021a. Do bryophyte elemental concentrations explain their morphological traits? Plants 10: e1581.
Fernández-Martínez M, Llusià J, Filella I, Niinemets Ü, Arneth A, Wright IJ, Loreto F, Peñuelas J. 2018. Nutrient-rich plants emit a less intense blend of volatile isoprenoids. New Phytologist 220: 773-784.
Fernández-Martínez M, Pearse I, Sardans J, Sayol F, Koenig WD, LaMontagne JM, Bogdziewicz M, Collalti A, Hacket-Pain A, Vacchiano G et al. 2019. Nutrient scarcity as a selective pressure for mast seeding. Nature Plants 5: 1222-1228.
Fernández-Martínez M, Preece C, Corbera J, Cano O, Garcia-Porta J, Sardans J, Janssens IA, Sabater F, Peñuelas J. 2021b. Bryophyte C:N:P stoichiometry, biogeochemical niches and elementome plasticity driven by environment and coexistence. Ecology Letters 24: 1375-1386.
Fernández-Martínez M, Sardans J, Musavi T, Migliavacca M, Iturrate-Garcia M, Scholes RJ, Peñuelas J, Janssens IA. 2020. The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance. Global Change Biology 26: 7067-7078.
Fernández-Martínez M, Vicca S, Janssens IA, Espelta JM, Peñuelas J. 2017. The role of nutrients, productivity and climate in determining tree fruit production in European forests. New Phytologist 213: 669-679.
Garrett LG, Smaill SJ, Beets PN, Kimberley MO, Clinton PW. 2021. Impacts of forest harvest removal and fertiliser additions on end of rotation biomass, carbon and nutrient stocks of Pinus radiata. Forest Ecology and Management 493: e119161.
Guiz J, Ebeling A, Eisenhauer N, Hacker N, Hertzog L, Oelmann Y, Roscher C, Wagg C, Hillebrand H. 2018. Interspecific competition alters leaf stoichiometry in 20 grassland species. Oikos 127: 903-914.
Guiz J, Hillebrand H, Borer ET, Abbas M, Ebeling A, Weigelt A, Oelmann Y, Fornara D, Wilcke W, Temperton VM et al. 2016. Long-term effects of plant diversity and composition on plant stoichiometry. Oikos 125: 613-621.
Hofmann P, Clark A, Hoffmann P, Chatzinotas A, Harpole WS, Dunker S. 2021. Beyond nitrogen: phosphorus - estimating the minimum niche dimensionality for resource competition between phytoplankton. Ecology Letters 24: 761-771.
Huang J, Liu W, Li S, Song L, Lu H, Shi X, Chen X, Hu T, Liu S, Liu T. 2019. Ecological stoichiometry of the epiphyte community in a subtropical forest canopy. Ecology and Evolution 9: 14394-14406.
Kaspari M. 2021. The invisible hand of the periodic table: how micronutrients shape ecology. Annual Review of Ecology, Evolution, and Systematics 52: 199-219.
Liang J, Crowther TW, Picard N, Wiser S, Zhou MO, Alberti G, Schulze E-D, McGuire AD, Bozzato F, Pretzsch H et al. 2016. Positive biodiversity-productivity relationship predominant in global forests. Science 354: aaf8957.
Maberly SC, Berthelot SA, Stott AW, Gontero B. 2015. Adaptation by macrophytes to inorganic carbon down a river with naturally variable concentrations of CO2. Journal of Plant Physiology 172: 120-127.
Mao Q, Lu X, Mo H, Mo J. 2018. Effects of simulated N deposition on foliar nutrient status, N metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest. Science of the Total Environment 610: 555-562.
Martiny AC, Vrugt JA, Lomas MW. 2014. Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean. Scientific Data 1: e140048.
McGroddy ME, Daufresne T, Hedin OL. 2004. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85: 2390-2401.
Peñuelas J, Fernández-Martínez M, Ciais P, Jou D, Piao S, Obersteiner M, Vicca S, Janssens IA, Sardans J. 2019. The bioelements, the elementome, and the biogeochemical niche. Ecology 100: e02652.
Penuelas J, Fernández-Martínez M, Vallicrosa H, Maspons J, Zuccarini P, Carnicer J, Sanders TGM, Krüger I, Obersteiner M, Janssens IA et al. 2020a. Increasing atmospheric CO2 concentrations correlate with declining nutritional status of European forests. Communications Biology 3: e125.
Peñuelas J, Janssens IA, Ciais P, Obersteiner M, Sardans J. 2020b. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. Global Change Biology 26: 1962-1985.
Perez-Quezada J, Pérez CA, Brito CE, Fuentes JP, Gaxiola A, Aguilera-Riquelme D, Lopatin J. 2021. Biotic and abiotic drivers of carbon, nitrogen and phosphorus stocks in a temperate rainforest. Forest Ecology and Management 494: e119341.
Qian J, Jin W, Hu J, Wang P, Wang C, Lu B, Li K, He X, Tang S. 2021. Stable isotope analyses of nitrogen source and preference for ammonium versus nitrate of riparian plants during the plant growing season in Taihu Lake Basin. Science of the Total Environment 763: e143029.
Redfield AC. 1934. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: Daniel RJ, ed. James Johnstone Memorial, vol. 176. Liverpool, UK: University Press of Liverpool, 176-192.
Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A. 2018. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist 218: 407-411.
Sardans J, Peñuelas J. 2015. Potassium: a neglected nutrient in global change. Global Ecology and Biogeography 24: 261-275.
Sardans J, Vallicrosa H, Zuccarini P, Farré-Armengol G, Fernández-Martínez M, Peguero G, Gargallo-Garriga A, Ciais P, Janssens IA, Obersteiner M et al. 2021. Empirical support for the biogeochemical niche hypothesis in forest trees. Nature Ecology & Evolution 5: 184-194.
Soons MB, Hefting MM, Dorland E, Lamers LPM, Versteeg C, Bobbink R. 2017. Nitrogen effects on plant species richness in herbaceous communities are more widespread and stronger than those of phosphorus. Biological Conservation 212: 390-397.
Sterner RW, Elser JJ. 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton, NJ, USA: Princeton University Press.
Vallicrosa H, Sardans J, Ogaya R, Fernández PR, Peñuelas J. 2021. Short-term N-fertilization differently affects the leaf and leaf litter chemistry of the dominant species in a Mediterranean forest under drought conditions. Forests 12: e605.
Velázquez D, Lezcano MÁ, Frias A, Quesada A. 2013. Ecological relationships and stoichiometry within a Maritime Antarctic watershed. Antarctic Science 25: 191-197.
Villéger S, Mason NWH, Mouillot D. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 2290-2301.
Wang S, Zhang Y, Ju W, Chen JM, Ciais P, Cescatti A, Sardans J, Janssens IA, Wu M, Berry JA et al. 2020. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370: 1295-1300.
Wang Z, Pi C, Li X, Bao W. 2019. Elevational patterns of carbon, nitrogen and phosphorus in understory bryophytes on the eastern slope of Gongga Mountain, China. Journal of Plant Ecology 12: 781-786.
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821-827.
Wu X, Du X, Fang S, Kang J, Xia Z, Guo Q. 2020. Impacts of competition and nitrogen addition on plant stoichiometry and non-structural carbohydrates in two larch species. Journal of Forestry Research 32: 2087-2098.
Zhu D, Hui D, Wang M, Yang Q, Yu S. 2020. Light and competition alter leaf stoichiometry of introduced species and native mangrove species. Science of the Total Environment 738: e140301.
Contributed Indexing:
Keywords: biogeochemistry; competition; ecological niche; functional traits; nutrients; stoichiometry
Molecular Sequence:
figshare 10.6084/m9.figshare.14748261.v2
Entry Date(s):
Date Created: 20211119 Date Completed: 20220331 Latest Revision: 20220401
Update Code:
20240105
DOI:
10.1111/nph.17864
PMID:
34797938
Czasopismo naukowe
The elemental composition of plants (the elementome) is a reliable indicator of their functional traits and the ecological strategies that they follow, and thus represents a good predictor of how ecosystems work. Biodiversity and, especially, functional diversity are also widely recognized as important drivers of ecosystem functioning, mainly because of niche partitioning amongst different species. Here, I review evidence indicating that plant elementomes relate to their ecological niches and how plant elemental concentrations may shift in response to abiotic and biotic drivers. I propose the use of ecosystem elementome diversity as a universal metric to compare ecosystems and investigate diversity-ecosystem functioning relationships. Future research using this promising novel approach will bring together elementomes, diversity, and ecosystem functioning.
(© 2021 The Author. New Phytologist © 2021 New Phytologist Foundation.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies