Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Why are Arctic shrubs becoming more nitrogen limited?

Tytuł:
Why are Arctic shrubs becoming more nitrogen limited?
Autorzy:
Street LE; School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK.
Caldararu S; Max Planck Institute for Biogeochemistry, Jena, 07745, Germany.
Źródło:
The New phytologist [New Phytol] 2022 Jan; Vol. 233 (2), pp. 585-587. Date of Electronic Publication: 2021 Nov 25.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Comment
Język:
English
Imprint Name(s):
Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
MeSH Terms:
Nitrogen*
Soil*
Arctic Regions
References:
Bassirirad H, Constable JVH, Lussenhop J, Kimball BA, Norby RJ, Oechel WC, Reich PB, Schlesinger WH, Zitzer S, Sehtiya HL et al. 2003. Widespread foliage δ15N depletion under elevated CO2: inferences for the nitrogen cycle. Global Change Biology 9: 1582-1590.
Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA. 1995. Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76: 694-711.
Clemmensen KE, Durling MB, Michelsen A, Hallin S, Finlay RD, Lindahl BD. 2021. A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen. Ecology Letters 24: 1193-1204.
Craine JM, Elmore AJ, Wang L, Aranibar J, Bauters M, Boeckx P, Crowley BE, Dawes MA, Delzon S, Fajardo A et al. 2018. Isotopic evidence for oligotrophication of terrestrial ecosystems. Nature Ecology and Evolution 2: 1735-1744.
Dawes MA, Hagedorn F, Zumbrunn T, Handa IT, Hättenschwiler S, Wipf S, Rixen C. 2011. Growth and community responses of alpine dwarf shrubs to in situ CO2 enrichment and soil warming. New Phytologist 191: 806-818.
Dormann CF, Woodin SJ. 2002. Climate change in the Arctic: using plant functional types in a meta-analysis of field experiments. Functional Ecology 16: 4-17.
Drake JE, Gallet-Budynek A, Hofmockel KS, Bernhardt ES, Billings SA, Jackson RB, Johnsen KS, Lichter J, McCarthy HR, McCormack ML et al. 2011. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecology Letters 14: 349-357.
Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME et al. 2007. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences, USA 104: 14014-14019.
Gwynn-Jones D, Lee JA, Callaghan TV. 1997. Effects of enhanced UV-B radiation and elevated carbon dioxide concentrations on a sub-arctic forest heath ecosystem. Plant Ecology 1281: 243-249.
Jiang M, Medlyn BE, Drake JE, Duursma RA, Anderson IC, Barton CVM, Boer MM, Carrillo Y, Castañeda-Gómez L, Collins L et al. 2020. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580: 227-231.
Martin AC, Macias-Fauria M, Bonsall MB, Forbes BC, Zetterberg P, Jeffers ES. 2022. Common mechanisms explain nitrogen-dependent growth of Arctic shrubs over three decades despite heterogeneous trends and declines in soil nitrogen availability. New Phytologist 233: 670-686.
Mekonnen ZA, Riley WJ, Berner LT, Bouskill NJ, Torn MS, Iwahana GO, Breen AL, Myers-Smith IH, Criado MG, Liu Y et al. 2021a. Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. Environmental Research Letters 16: 053001.
Mekonnen ZA, Riley WJ, Grant RF, Salmon VG, Iversen CM, Biraud SC, Breen AL, Lara MJ. 2021b. Topographical controls on hillslope-scale hydrology drive shrub distributions on the Seward Peninsula, Alaska. Journal of Geophysical Research: Biogeosciences 126: e2020JG005823.
Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M, Blok D, Tape KD, Rayback SA, Macias-Fauria M, Forbes BC et al. 2015. Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change 5: 887-891.
Oechel WC, Cowles S, Grulke N, Hastings SJ, Lawrence B, Prudhomme T, Riechers G, Strain B, Tissue D, Vourlitis G. 1994. Transient nature of CO2 fertilization in Arctic tundra. Nature 371: 500-503.
Rastetter EB, Kwiatkowski BL, Le Dizès S, Hobbie JE. 2004. The role of down-slope water and nutrient fluxes in the response of Arctic hill slopes to climate change. Biogeochemistry 69: 37-62.
Shaver GR, Billings WD, Chapin FS III, Giblin AE, Nadelhoffer KJ, Oechel WC, Rastetter EB. 1992. Global change and the carbon balance of Arctic ecosystems: carbon/nutrient interactions should act as major constraints on changes in global terrestrial carbon cycling. BioScience 42: 433-441.
Street LE, Garnett MH, Subke JA, Baxter R, Dean JF, Wookey PA. 2020. Plant carbon allocation drives turnover of old soil organic matter in permafrost tundra soils. Global Change Biology 26: 4559-4571.
Terrer C, Phillips RP, Hungate BA, Rosende J, Pett-Ridge J, Craig ME, van Groenigen KJ, Keenan TF, Sulman BN, Stocker BD et al. 2021. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591: 599-603.
Tissue DT, Oechel WC. 1987. Response of Eriophorum vaginatum to elevated CO2 and temperature in the Alaskan tussock tundra. Ecology 68: 401-410.
Walker AP, De Kauwe MG, Bastos A, Belmecheri S, Georgiou K, Keeling RF, McMahon SM, Medlyn BE, Moore DJP, Norby RJ et al. 2021. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytologist 229: 2413-2445.
Contributed Indexing:
Keywords: Arctic plant productivity; dendroecological data; increasing atmospheric CO2 concentrations; nutrient limitation; plant-soil feedback; shrub abundance; soil nitrogen availability; temperature
Substance Nomenclature:
0 (Soil)
N762921K75 (Nitrogen)
Entry Date(s):
Date Created: 20211125 Date Completed: 20220324 Latest Revision: 20220324
Update Code:
20240105
DOI:
10.1111/nph.17841
PMID:
34820852
Czasopismo naukowe
Comment on: New Phytol. 2022 Jan;233(2):670-686. (PMID: 34087005)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies