Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Biomimetic nanoparticles: U937 cell membranes based core-shell nanosystems for targeted atherosclerosis therapy.

Tytuł:
Biomimetic nanoparticles: U937 cell membranes based core-shell nanosystems for targeted atherosclerosis therapy.
Autorzy:
Shen JW; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
Li C; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
Yang MY; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
Lin JF; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
Yin MD; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
Zou JJ; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
Wu PY; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
Chen L; Materials and Chemical Engineering College of Minjiang University, Fuzhou, 350108, China.
Song LX; Materials and Chemical Engineering College of Minjiang University, Fuzhou, 350108, China.
Shao JW; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China. Electronic address: .
Źródło:
International journal of pharmaceutics [Int J Pharm] 2022 Jan 05; Vol. 611, pp. 121297. Date of Electronic Publication: 2021 Nov 22.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Amsterdam, Elsevier/North-Holland Biomedical Press.
MeSH Terms:
Atherosclerosis*/drug therapy
Nanoparticles*
Animals ; Biomimetics ; Cell Membrane ; Humans ; Hydrogen Peroxide ; Mice ; U937 Cells
Contributed Indexing:
Keywords: Atherosclerosis; Catalase; Cell membrane; Ginsenoside Re; Nanosystem
Substance Nomenclature:
BBX060AN9V (Hydrogen Peroxide)
Entry Date(s):
Date Created: 20211125 Date Completed: 20211222 Latest Revision: 20211222
Update Code:
20240105
DOI:
10.1016/j.ijpharm.2021.121297
PMID:
34822966
Czasopismo naukowe
Atherosclerosis (AS), with its intricate pathogenesis, is primarily responsible for the development and progression of cardiovascular diseases. Although drug development has made some achievements in AS therapy, limited targeting ability and rapid blood clearance remain great challenges for achieving superior clinical outcomes. Herein, ginsenoside (Re)- and catalase (CAT)-coloaded porous poly(lactic-coglycolic acid) (PLGA) nanoparticles (NPs) were prepared and then surface modified with U937 cell membranes (UCMs) to yield a dual targeted model and multimechanism treatment biomimetic nanosystem (Cat/Re@PLGA@UCM). The nanoparticles consisted of a core-shell spherical morphology with a favorable size of 112.7 ± 0.4 nm. Furthermore, UCM assisted the nanosystem in escaping macrophage phagocytosis and targeting atherosclerotic plaques. Meanwhile, loading with catalase might not only exhibit favorable antioxidant effects but also enable H 2 O 2 -responsive drug release ability. The Cat/Re@PLGA@UCM NPs also exhibited outstanding ROS scavenging properties, downregulating ICAM-1, TNF-α and IL-1β, while preventing angiogenesis to attenuate the progression of AS. Moreover, the nanodrugs displayed 2.7-fold greater efficiency in reducing the atherosclerotic area in ApoE -/- mouse models compared to free Re. Our nanoformulation also displayed excellent biosafety in response to long-term administration. Overall, our study demonstrated the superiority of UCM-coated stimuli-responsive nanodrugs for effective and safe AS therapy.
(Copyright © 2021 Elsevier B.V. All rights reserved.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies