Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Aberrant integration of Hepatitis B virus DNA promotes major restructuring of human hepatocellular carcinoma genome architecture.

Tytuł:
Aberrant integration of Hepatitis B virus DNA promotes major restructuring of human hepatocellular carcinoma genome architecture.
Autorzy:
Álvarez EG; Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.; Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
Demeulemeester J; The Francis Crick Institute, London, NW1 1AT, UK.; Department of Human Genetics, University of Leuven, Leuven, B-3000, Belgium.
Otero P; Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.; Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
Jolly C; The Francis Crick Institute, London, NW1 1AT, UK.
García-Souto D; Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.; Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
Pequeño-Valtierra A; Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
Zamora J; Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
Tojo M; The Biomedical Research Centre (CINBIO), Universidade de Vigo, Vigo, 36310, Spain.
Temes J; Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
Baez-Ortega A; Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK.
Rodriguez-Martin B; Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.; Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
Oitaben A; Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.; Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
Bruzos AL; Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.; Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
Martínez-Fernández M; Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
Haase K; The Francis Crick Institute, London, NW1 1AT, UK.
Zumalave S; Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.; Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
Abal R; Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
Rodríguez-Castro J; Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
Rodriguez-Casanova A; Cancer Epigenomics, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, 15706, Spain.; Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of SantiagodeCompostela(IDIS), Santiago de Compostela, 15706, Spain.
Diaz-Lagares A; Cancer Epigenomics, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, 15706, Spain.; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, 28029, Spain.
Li Y; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
Raine KM; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
Butler AP; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
Otero I; Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.; Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
Ono A; Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
Aikata H; Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
Chayama K; Collaborative Research Laboratory of Medical Innovation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.; Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.; RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
Ueno M; Department of Surgery II, Wakayama Medical University, Wakayama, Japan.
Hayami S; Department of Surgery II, Wakayama Medical University, Wakayama, Japan.
Yamaue H; Department of Surgery II, Wakayama Medical University, Wakayama, Japan.
Maejima K; RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
Blanco MG; Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
Forns X; Liver Unit, Hospital Clínic, University of Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain.
Rivas C; Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.; Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB - CSIC), Madrid, 28049, Spain.
Ruiz-Bañobre J; Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, 28029, Spain.; Department of Medical Oncology, University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela, Santiago de Compostela, 15706, Spain.; Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15706, Spain.
Pérez-Del-Pulgar S; Liver Unit, Hospital Clínic, University of Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain.
Torres-Ruiz R; Molecular Cytogenetics and Genome Engineering Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.; Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.
Rodriguez-Perales S; Molecular Cytogenetics and Genome Engineering Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.
Garaigorta U; Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB - CSIC), Madrid, 28049, Spain.
Campbell PJ; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.; Department of Haematology, University of Cambridge, Cambridge, CB2 2XY, UK.
Nakagawa H; RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
Van Loo P; The Francis Crick Institute, London, NW1 1AT, UK.
Tubio JMC; Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain. .; Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain. .
Źródło:
Nature communications [Nat Commun] 2021 Nov 25; Vol. 12 (1), pp. 6910. Date of Electronic Publication: 2021 Nov 25.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
DNA, Viral*
Genome, Human*
Carcinoma, Hepatocellular/*genetics
Hepatitis B virus/*genetics
Liver Neoplasms/*genetics
Carcinoma, Hepatocellular/virology ; Gene Expression Regulation, Neoplastic ; Humans ; Virus Integration ; Whole Genome Sequencing
References:
Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018). (PMID: 3020759310.3322/caac.21492)
Midorikawa, Y. et al. Molecular karyotyping of human hepatocellular carcinoma using single-nucleotide polymorphism arrays. Oncogene 25, 5581–5590 (2006). (PMID: 1678599810.1038/sj.onc.1209537)
Wong, N. et al. A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping. Hepatology 32, 1060–1068 (2000). (PMID: 1105005710.1053/jhep.2000.19349)
Meyer, M., Wiedorn, K. H., Hofschneider, P. H., Koshy, R. & Caselmann, W. H. A chromosome 17:7 translocation is associated with a hepatitis B virus DNA integration in human hepatocellular carcinoma DNA. Hepatology 15, 665–671 (1992). (PMID: 131298610.1002/hep.1840150419)
Meng, G. et al. TSD: a computational tool to study the complex structural variants using PacBio targeted sequencing data. G3 9, 1371–1376 (2019). (PMID: 30850377650513510.1534/g3.118.200900)
Wang, Y. et al. Characterization of HBV integrants in 14 hepatocellular carcinomas: association of truncated X gene and hepatocellular carcinogenesis. Oncogene 23, 142–148 (2004). (PMID: 1471221910.1038/sj.onc.1206889)
Rogler, C. E. et al. Deletion in chromosome 11p associated with a hepatitis B integration site in hepatocellular carcinoma. Science 230, 319–322 (1985). (PMID: 299613110.1126/science.2996131)
Pineau, P. et al. A t(3;8) chromosomal translocation associated with hepatitis B virus intergration involves the carboxypeptidase N locus. J. Virol. 70, 7280–7284 (1996). (PMID: 879438319078910.1128/jvi.70.10.7280-7284.1996)
Jiang, Z. et al. The effects of hepatitis B virus integration into the genomes of hepatocellular carcinoma patients. Genome Res. 22, 593–601 (2012). (PMID: 22267523331714210.1101/gr.133926.111)
Peneau, C. et al. Hepatitis B virus integrations promote local and distant oncogenic driver alterations in hepatocellular carcinoma. Gut. https://doi.org/10.1136/gutjnl-2020-323153 Published Online First: 09 February 2021.
Fujimoto, A. et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat. Genet. 48, 500–509 (2016). (PMID: 2706425710.1038/ng.3547)
Tu, T., Budzinska, M. A., Shackel, N. A. & Urban, S. HBV DNA integration: molecular mechanisms and clinical implications. Viruses 9, 75 (2017).
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020). (PMID: 10.1038/s41586-020-1969-6)
Zapatka, M. et al. The landscape of viral associations in human cancers. Nat. Genet. 52, 320–330 (2020). (PMID: 32025001807601610.1038/s41588-019-0558-9)
Rodriguez-Martin, B. et al. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat. Genet. 52, 306–319 (2020). (PMID: 32024998705853610.1038/s41588-019-0562-0)
Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020). (PMID: 32025012702589710.1038/s41586-019-1913-9)
Nagaya, T. et al. The mode of hepatitis B virus DNA integration in chromosomes of human hepatocellular carcinoma. Genes Dev. 1, 773–782 (1987). (PMID: 282817110.1101/gad.1.8.773)
Li, Y. et al. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508, 98–102 (2014). (PMID: 24670643397627210.1038/nature13115)
Sullivan, B. A. & Willard, H. F. Stable dicentric X chromosomes with two functional centromeres. Nat. Genet. 20, 227–228 (1998). (PMID: 980653610.1038/3024)
Furuta, M. et al. Characterization of HBV integration patterns and timing in liver cancer and HBV-infected livers. Oncotarget 9, 25075–25088 (2018). (PMID: 29861854598277210.18632/oncotarget.25308)
Sung, W. K. et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet. 44, 765–769 (2012). (PMID: 2263475410.1038/ng.2295)
Scully, R., Panday, A., Elango, R. & Willis, N. A. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell Biol. 20, 698–714 (2019). (PMID: 31263220731540510.1038/s41580-019-0152-0)
Gerstung, M. et al. The evolutionary history of 2,658 cancers. bioRxiv https://doi.org/10.1101/161562 (2018).
Jolly, C. & Van Loo, P. Timing somatic events in the evolution of cancer. Genome Biol. 19, 95 (2018). (PMID: 30041675605703310.1186/s13059-018-1476-3)
Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nat. Genet. 47, 1402–1407 (2015). (PMID: 26551669478385810.1038/ng.3441)
Jordan, J. J. et al. Altered-function p53 missense mutations identified in breast cancers can have subtle effects on transactivation. Mol. Cancer Res. 8, 701–716 (2010). (PMID: 20407015287366310.1158/1541-7786.MCR-09-0442)
Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019). (PMID: 3037187810.1093/nar/gky1015)
Sun, X. et al. Arid1a has context-dependent oncogenic and tumor suppressor functions in liver cancer. Cancer Cell 32, 574–589 e6 (2017). (PMID: 29136504572818210.1016/j.ccell.2017.10.007)
Sondka, Z. et al. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat. Rev. Cancer 18, 696–705 (2018). (PMID: 30293088645050710.1038/s41568-018-0060-1)
Martinez-Jimenez, F. et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 555–572 (2020). (PMID: 3277877810.1038/s41568-020-0290-x)
Amaddeo, G., Guichard, C., Imbeaud, S. & Zucman-Rossi, J. Next-generation sequencing identified new oncogenes and tumor suppressor genes in human hepatic tumors. Oncoimmunology 1, 1612–1613 (2012). (PMID: 23264911352562010.4161/onci.21480)
Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009). (PMID: 19360079282168910.1038/nature07943)
Li, Y. et al. Patterns of structural variation in human cancer. bioRxiv https://doi.org/10.1101/181339 (2017).
Lok, A. S., Zoulim, F., Dusheiko, G. & Ghany, M. G. Hepatitis B cure: from discovery to regulatory approval. J. Hepatol. 67, 847–861 (2017). (PMID: 2877868710.1016/j.jhep.2017.05.008)
Fanning, G. C., Zoulim, F., Hou, J. & Bertoletti, A. Therapeutic strategies for hepatitis B virus infection: towards a cure. Nat. Rev. Drug Discov. 18, 827–844 (2019). (PMID: 3145590510.1038/s41573-019-0037-0)
European Association for the Study of the Liver EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 67, 370–398 (2017). (PMID: 10.1016/j.jhep.2017.03.021)
Yang, W. & Summers, J. Integration of hepadnavirus DNA in infected liver: evidence for a linear precursor. J. Virol. 73, 9710–9717 (1999). (PMID: 1055928011301710.1128/JVI.73.12.9710-9717.1999)
Campbell, P. J., Getz, G., Stuart, J. M., Korbel, J. O. & Stein, L. D. Pan-cancer analysis of whole genomes. bioRxiv https://doi.org/10.1101/162784 (2017).
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010). (PMID: 20080505282810810.1093/bioinformatics/btp698)
Tubio, J. M. et al. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science 345, 1251343 (2014). (PMID: 25082706438023510.1126/science.1251343)
Morgulis, A., Gertz, E. M., Schaffer, A. A. & Agarwala, R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J. Comput. Biol. 13, 1028–1040 (2006). (PMID: 1679654910.1089/cmb.2006.13.1028)
Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008). (PMID: 18349386233680110.1101/gr.074492.107)
Goodacre, N., Aljanahi, A., Nandakumar, S., Mikailov, M. & Khan, A. S. A Reference Viral Database (RVDB) to enhance bioinformatics analysis of high-throughput sequencing for novel virus detection. mSphere 3, e00069-18 (2018).
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). (PMID: 19505943272300210.1093/bioinformatics/btp352)
Dentro, S. C. et al. Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types. bioRxiv https://doi.org/10.1101/312041 (2018).
Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012). (PMID: 22608083342886410.1016/j.cell.2012.04.023)
Gel, B. et al. regioneR: an R/Bioconductor package for the association analysis of genomic regions based on permutation tests. Bioinformatics 32, 289–291 (2016). (PMID: 2642485810.1093/bioinformatics/btv562)
Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012). (PMID: 10.1038/nature11247)
Consortium, G. T. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020). (PMID: 10.1126/science.aaz1776)
Grant Information:
United Kingdom WT_ Wellcome Trust; FC001202 United Kingdom ARC_ Arthritis Research UK; MR/L016311/1 United Kingdom MRC_ Medical Research Council
Substance Nomenclature:
0 (DNA, Viral)
Entry Date(s):
Date Created: 20211126 Date Completed: 20220103 Latest Revision: 20230208
Update Code:
20240104
PubMed Central ID:
PMC8617174
DOI:
10.1038/s41467-021-26805-8
PMID:
34824211
Czasopismo naukowe
Most cancers are characterized by the somatic acquisition of genomic rearrangements during tumour evolution that eventually drive the oncogenesis. Here, using multiplatform sequencing technologies, we identify and characterize a remarkable mutational mechanism in human hepatocellular carcinoma caused by Hepatitis B virus, by which DNA molecules from the virus are inserted into the tumour genome causing dramatic changes in its configuration, including non-homologous chromosomal fusions, dicentric chromosomes and megabase-size telomeric deletions. This aberrant mutational mechanism, present in at least 8% of all HCC tumours, can provide the driver rearrangements that a cancer clone requires to survive and grow, including loss of relevant tumour suppressor genes. Most of these events are clonal and occur early during liver cancer evolution. Real-time timing estimation reveals some HBV-mediated rearrangements occur as early as two decades before cancer diagnosis. Overall, these data underscore the importance of characterising liver cancer genomes for patterns of HBV integration.
(© 2021. The Author(s).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies