Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Patterns of gene expression in pollen of cotton (Gossypium hirsutum) indicate downregulation as a feature of thermotolerance.

Tytuł:
Patterns of gene expression in pollen of cotton (Gossypium hirsutum) indicate downregulation as a feature of thermotolerance.
Autorzy:
Masoomi-Aladizgeh F; Department of Biological Sciences, Macquarie University, NSW, Australia.
McKay MJ; Australian Proteome Analysis Facility, Department of Molecular Sciences, Macquarie University, NSW, Australia.
Asar Y; School of Life and Environmental Sciences, University of Sydney, NSW, Australia.
Haynes PA; Department of Molecular Sciences, Macquarie University, NSW, Australia.
Atwell BJ; Department of Biological Sciences, Macquarie University, NSW, Australia.
Źródło:
The Plant journal : for cell and molecular biology [Plant J] 2022 Feb; Vol. 109 (4), pp. 965-979. Date of Electronic Publication: 2021 Dec 17.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Oxford : Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology, c1991-
MeSH Terms:
Down-Regulation*
Gene Expression Regulation, Plant*
Gossypium/*genetics
Pollen/*genetics
Thermotolerance/*genetics
Gossypium/metabolism ; Heat-Shock Proteins/metabolism ; Hot Temperature ; Plant Leaves ; Plant Proteins/genetics ; Plant Proteins/metabolism ; Pollen/growth & development ; Pollen/metabolism ; Proteomics ; Thermotolerance/physiology ; Transcriptome
References:
Baluška, F., Cvrčková, F., Kendrick-Jones, J. & Volkmann, D. (2001) Sink plasmodesmata as gateways for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength? Plant Physiology, 126, 39-46.
Begcy, K., Nosenko, T., Zhou, L.Z., Fragner, L., Weckwerth, W. & Dresselhaus, T. (2019) Male sterility in maize after transient heat stress during the tetrad stage of pollen development. Plant Physiology, 181, 683-700.
Benitez-Alfonso, Y. (2014) Symplastic intercellular transport from a developmental perspective. Journal of Experimental Botany, 65, 1857-1863.
Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of Royal Statistical Society, 57, 289-300.
Borg, M., Brownfield, L. & Twell, D. (2009) Male gametophyte development: a molecular perspective. Journal of Experimental Botany, 60, 1465-1478.
Cui, P. & Xiong, L. (2015) Environmental stress and pre-mRNA splicing. Molecular Plant, 8, 1302-1303.
Deng, Y., Srivastava, R., Quilichini, T.D., Dong, H., Bao, Y., Horner, H.T. et al. (2016) IRE1, a component of the unfolded protein response signaling pathway, protects pollen development in Arabidopsis from heat stress. The Plant Journal, 88, 193-204.
Djanaguiraman, M., Perumal, R., Ciampitti, I.A., Gupta, S.K. & Prasad, P.V.V. (2018) Quantifying pearl millet response to high temperature stress: thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil. Plant, Cell and Environment, 41, 993-1007.
Hamzelou, S., Kamath, K.S., Masoomi-Aladizgeh, F., Johnsen, M.M., Atwell, B.J. & Haynes, P.A. (2020) Wild and cultivated species of rice have distinctive proteomic responses to drought. International Journal of Molecular Sciences, 21, 5980.
Holdaway-Clarke, T.L., Walker, N.A., Hepler, P.K. & Overall, R.L. (2000) Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata. Planta, 210, 329-335.
Hopf, N., Plesofsky-Vig, N. & Brambl, R. (1992) The heat shock response of pollen and other tissues of maize. Plant Molecular Biology, 19, 623-630.
Jagadish, S.V.K. (2020) Heat stress during flowering in cereals - effects and adaptation strategies. New Phytologist, 226, 1567-1572.
Jiang, Y., Lahlali, R., Karunakaran, C., Warkentin, T.D., Davis, A.R. & Bueckert, R.A. (2019) Pollen, ovules, and pollination in pea: success, failure, and resilience in heat. Plant, Cell and Environment, 42, 354-372.
Khan, A. & Mathelier, A. (2017) Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinformatics, 18, 287.
Laloum, T., Martín, G. & Duque, P. (2018) Alternative splicing control of abiotic stress responses. Trends in Plant Science, 23, 140-150.
Li, X.M., Chao, D.Y., Wu, Y., Huang, X., Chen, K., Cui, L.G. et al. (2015a) Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nature Genetics, 47, 827-833.
Li, X., Lawas, L.M.F., Malo, R., Glaubitz, U., Erban, A., Mauleon, R. et al. (2015b) Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant, Cell and Environment, 38, 2171-2192.
MacLean, B., Tomazela, D.M., Shulman, N., Chambers, M., Finney, G.L., Frewen, B. et al. (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics, 26, 966-968.
Masoomi-Aladizgeh, F., Jabbari, L., Khayam Nekouei, R. & Aalami, A. (2016) A simple and rapid system for DNA and RNA Isolation from diverse plants using handmade kit. Protocol Exchange. https://doi.org/10.1038/protex.2016.015.
Masoomi-Aladizgeh, F., Najeeb, U., Hamzelou, S., Pascovici, D., Amirkhani, A., Tan, D.K.Y. et al. (2020) Pollen development in cotton (Gossypium hirsutum) is highly sensitive to heat exposure during the tetrad stage. Plant, Cell and Environment, 44, 2150-2166.
Mittler, R., Finka, A. & Goloubinoff, P. (2012) How do plants feel the heat? Trends in Biochemical Sciences, 37, 118-125.
Patchett, A.L., Coorens, T.H.H., Darby, J., Wilson, R., McKay, M.J., Kamath, K.S. et al. (2020) Two of a kind: transmissible Schwann cell cancers in the endangered Tasmanian devil (Sarcophilus harrisii). Cellular and Molecular Life Sciences, 77, 1847-1858.
Peredo, E.L. & Cardon, Z.G. (2020) Shared up-regulation and contrasting down-regulation of gene expression distinguish desiccation-tolerant from intolerant green algae. Proceedings of the National Academy of Sciences United States of America, 117, 17438-17445.
Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D.J. et al. (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Research, 47, D442-D450.
Peterson, R., Slovin, J.P. & Chen, C. (2010) A simplified method for differential staining of aborted and non-aborted pollen grains. International Journal of Plant Biology, 1, e13.
Raja, M.M., Vijayalakshmi, G., Naik, M.L., Basha, P.O., Sergeant, K., Hausman, J.F. et al. (2019) Pollen development and function under heat stress: from effects to responses. Acta Physiologiae Plantarum, 41, 47.
Roberts, A.G. & Oparka, K.J. (2003) Plasmodesmata and the control of symplastic transport. Plant, Cell and Environment, 26, 103-124.
Robinson, M.D. & Oshlack, A. (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology, 11, R25.
Sable, A., Rai, K.M., Choudhary, A., Yadav, V.K., Agarwal, S.K. & Sawant, S.V. (2018) Inhibition of heat shock proteins HSP90 and HSP70 induce oxidative stress, suppressing cotton fiber development. Scientific Reports, 8, 3620.
Saidi, Y., Finka, A., Muriset, M., Bromberg, Z., Weiss, Y.G., Maathuis, F.J.M. et al. (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. The Plant Cell, 21, 2829-2843.
Schlicker, A., Domingues, F.S., Rahnenführer, J. & Lengauer, T. (2006) A new measure for functional similarity of gene products based on gene ontology. BMC Bioinformatics, 7, 302.
Sita, K., Sehgal, A., Hanumantharao, B., Nair, R.M., Vara Prasad, P.V., Kumar, S. et al. (2017) Food legumes and rising temperatures: effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Frontiers in Plant Science, 8, 1658.
Song, G., Wang, M., Zeng, B., Zhang, J., Jiang, C., Hu, Q. et al. (2015) Anther response to high-temperature stress during development and pollen thermotolerance heterosis as revealed by pollen tube growth and in vitro pollen vigor analysis in upland cotton. Planta, 241, 1271-1285.
Stahl, Y. & Simon, R. (2013) Gated communities: apoplastic and symplastic signals converge at plasmodesmata to control cell fates. Journal of Experimental Botany, 64, 5237-5241.
Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. (2011) Revigo summarizes and visualizes long lists of gene ontology terms. PLoS One, 6, e21800.
Suzuki, N., Miller, G., Morales, J., Shulaev, V., Torres, M.A. & Mittler, R. (2011) Respiratory burst oxidases: the engines of ROS signaling. Current Opinion in Plant Biology, 14, 691-699.
Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M. & Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13, 731-740.
Ul Haq, S., Khan, A., Ali, M., Khattak, A.M., Gai, W.-X., Zhang, H.-X. et al. (2019) Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. International Journal of Molecular Sciences, 20, 5321.
Voesenek, L.A.C.J. & Bailey-Serres, J. (2013) Flooding tolerance: O2 sensing and survival strategies. Current Opinion in Plant Biology, 16, 647-653.
Wahid, A., Gelani, S., Ashraf, M. & Foolad, M.R. (2007) Heat tolerance in plants: an overview. Environmental and Experimental Botany, 61, 199-223.
Walter, W., Sánchez-Cabo, F. & Ricote, M. (2015) GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics, 31, 2912-2914.
Wang, W., Vinocur, B., Shoseyov, O. & Altman, A. (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9, 244-252.
Wu, J.X., Song, X., Pascovici, D., Zaw, T., Care, N., Krisp, C. et al. (2016) SWATH mass spectrometry performance using extended peptide MS/MS assay libraries. Molecular & Cellular Proteomics: MCP, 15, 2501-2514.
Yu, J., Jiang, M. & Guo, C. (2019) Crop pollen development under drought: from the phenotype to the mechanism. International Journal of Molecular Sciences, 20, 1550.
Zhang, T., Hu, Y., Jiang, W., Fang, L., Guan, X., Chen, J. et al. (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 33, 531-537.
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D.B., Huang, Y. et al. (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences United States of America, 114, 9326-9331.
Contributed Indexing:
Keywords: Gossypium hirsutum; RNA-seq; SWATH-MS; cotton; heat shock proteins; heat stress; metabolic downregulation; pollen development; tetrads
Substance Nomenclature:
0 (Heat-Shock Proteins)
0 (Plant Proteins)
Entry Date(s):
Date Created: 20211127 Date Completed: 20220308 Latest Revision: 20220308
Update Code:
20240104
DOI:
10.1111/tpj.15608
PMID:
34837283
Czasopismo naukowe
Reproductive performance in plants is impaired as maximum temperatures consistently approach 40°C. However, the timing of heatwaves critically affects their impact. We studied the molecular responses during pollen maturation in cotton to investigate the vulnerability to high temperature. Tetrads (TEs), uninucleate and binucleate microspores, and mature pollen were subjected to SWATH-MS and RNA-seq analyses after exposure to 38/28°C (day/night) for 5 days. The results indicated that molecular signatures were downregulated progressively in response to heat during pollen development. This was even more evident in leaves, where three-quarters of differentially changed proteins decreased in abundance during heat. Functional analysis showed that translation of genes increased in TEs after exposure to heat; however, the reverse pattern was observed in mature pollen and leaves. For example, proteins involved in transport were highly abundant in TEs whereas in later stages of pollen formation and leaves, heat suppressed synthesis of proteins involved in cell-to-cell communication. Moreover, a large number of heat shock proteins were identified in heat-affected TEs, but these proteins were less abundant in mature pollen and leaves. We speculate that the sensitivity of TE cells to heat is related to high rates of translation targeted to pathways that might not be essential for thermotolerance. Molecular signatures during stages of pollen development after heatwaves could provide markers for future genetic improvement.
(© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies