Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Network Analysis Identifies Regulators of Basal-Like Breast Cancer Reprogramming and Endocrine Therapy Vulnerability.

Tytuł:
Network Analysis Identifies Regulators of Basal-Like Breast Cancer Reprogramming and Endocrine Therapy Vulnerability.
Autorzy:
Choi SR; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Hwang CY; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Lee J; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Cho KH; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea. .
Źródło:
Cancer research [Cancer Res] 2022 Jan 15; Vol. 82 (2), pp. 320-333. Date of Electronic Publication: 2021 Nov 29.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Baltimore, Md. : American Association for Cancer Research
Original Publication: Chicago [etc.]
MeSH Terms:
Antineoplastic Agents, Hormonal/*therapeutic use
Cellular Reprogramming/*genetics
Cellular Reprogramming Techniques/*methods
Drug Resistance, Neoplasm/*drug effects
Drug Resistance, Neoplasm/*genetics
Tamoxifen/*therapeutic use
Transcriptome/*genetics
Triple Negative Breast Neoplasms/*drug therapy
Triple Negative Breast Neoplasms/*genetics
Antineoplastic Agents, Hormonal/pharmacology ; Cohort Studies ; Estrogen Receptor alpha/antagonists & inhibitors ; Estrogen Receptor alpha/metabolism ; Female ; Gene Expression Profiling/methods ; Gene Expression Regulation, Neoplastic ; Gene Knockout Techniques ; Gene Regulatory Networks ; Histone Deacetylase 1/genetics ; Histone Deacetylase 2/genetics ; Humans ; MCF-7 Cells ; Phenotype ; Repressor Proteins/genetics ; Tamoxifen/pharmacology ; Transfection ; Treatment Outcome ; Triple Negative Breast Neoplasms/metabolism ; Triple Negative Breast Neoplasms/pathology
References:
Torre LA, Islami F, Siegel RL, Ward EM, Jemal A. Global cancer in women: Burden and trend. Cancer Epidem Biomar. 2017;26:444–57.
Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.
Prat A, Perou CM. Mammary development meets cancer genomics. Nat Med. 2009;15:842–4.
Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009;15:907–13.
Dai X, Cheng H, Chen X, Li T, Zhang J, Jin G, et al. FOXA1 is prognostic of triple negative breast cancers by transcriptionally suppressing SOD2 and IL6. Int J Biol Sci. 2019;15:1030–41.
Esteva FJ, Sahin AA, Cristofanilli M, Arun B, Hortobagyi GN. Molecular prognostic factors for breast cancer metastasis and survival. Semin Radiat Oncol. 2002;12:319–28.
Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H. Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol. 2010;28:1684–91.
Howlader N, Altekruse SF, Li CI, Chen VW, Clarke CA, Ries LA, et al. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J Natl Cancer Inst. 2014;106:dju055.
Millikan RC, Newman B, Tse CK, Moorman PG, Conway K, Dressler LG, et al. Epidemiology of basal-like breast cancer. Breast Cancer Res Treat. 2008;109:123–39.
Jiang W, Wang X, Zhang C, Xue L, Yang L. Expression and clinical significance of MAPK and EGFR in triple-negative breast cancer. Oncol Lett. 2020;19:1842–8.
Nakai K, Hung MC, Yamaguchi H. A perspective on anti-EGFR therapies targeting triple-negative breast cancer. Am J Cancer Res. 2016;6:1609–23.
Majorini MT, Manenti G, Mano M, De Cecco L, Conti A, Pinciroli P, et al. cIAP1 regulates the EGFR/Snai2 axis in triple-negative breast cancer cells. Cell Death Differ. 2018;25:2147–64.
Su Y, Hopfinger NR, Nguyen TD, Pogash TJ, Santucci-Pereira J, Russo J. Epigenetic reprogramming of epithelial mesenchymal transition in triple negative breast cancer cells with DNA methyltransferase and histone deacetylase inhibitors. J Exp Clin Cancer Res. 2018;37:314.
Zhao H, Agazie YM. Inhibition of SHP2 in basal-like and triple-negative breast cells induces basal-to-luminal transition, hormone dependency, and sensitivity to anti-hormone treatment. BMC Cancer. 2015;15:109.
Kwon YK, Cho KH. Boolean dynamics of biological networks with multiple coupled feedback loops. Biophys J. 2007;92:2975–81.
Fumia HF, Martins ML. Boolean network model for cancer pathways: predicting carcinogenesis and targeted therapy outcomes. PLoS One. 2013;8:e69008.
Shin SY, Kim T, Lee HS, Kang JH, Lee JY, Cho KH, et al. The switching role of beta-adrenergic receptor signalling in cell survival or death decision of cardiomyocytes. Nat Commun. 2014;5:5777.
Kim JR, Kim J, Kwon YK, Lee HY, Heslop-Harrison P, Cho KH. Reduction of complex signaling networks to a representative kernel. Sci Signal. 2011;4:ra35.
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.
Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27:1160–7.
Saez-Rodriguez J, Alexopoulos LG, Epperlein J, Samaga R, Lauffenburger DA, Klamt S, et al. Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol Syst Biol. 2009;5:331.
Kim J, Park SM, Cho KH. Discovery of a kernel for controlling biomolecular regulatory networks. Sci Rep. 2013;3:2223.
Kauffman SA. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol. 1969;22:437–67.
Gao Y, Wu H, He D, Hu X, Li Y. Downregulation of BCL11A by siRNA induces apoptosis in B lymphoma cell lines. Biomed Rep. 2013;1:47–52.
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80.
Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.
Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–25.
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.
Cheang MCU, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value then triple-negative phenotype. Clin Cancer Res. 2008;14:1368–76.
Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, et al. Membrane and nuclear estrogen receptor alpha actions: From tissue specificity to medical implications. Physiol Rev. 2017;97:1045–87.
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.
Pereira B, Chin SF, Rueda OM, Vollan HK, Provenzano E, Bardwell HA, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016;7:11479.
Welboren WJ, Stunnenberg HG, Sweep FC, Span PN. Identifying estrogen receptor target genes. Mol Oncol. 2007;1:138–43.
Zakaria Z, Zulkifle MF, Wan Hasan WAN, Azlah AK, Raub SHA, Eswaran J, et al. Epidermal growth factor receptor (EGFR) gene alteration and protein overexpression in Malaysian triple-negative breast cancer (TNBC) cohort. Onco Targets Ther. 2019;12:7749–56.
Helikar T, Kochi N, Kowal B, Dimri M, Naramura M, Raja SM, et al. A comprehensive, multi-scale dynamical model of ErbB receptor signal transduction in human mammary epithelial cells. PLoS One. 2013;8:e61757.
Chaudhary S, Krishna BM, Mishra SK. A novel FOXA1/ESR1 interacting pathway: A study of Oncomine breast cancer microarrays. Oncol Lett. 2017;14:1247–64.
Fang SH, Chen Y, Weigel RJ. GATA-3 as a marker of hormone response in breast cancer. J Surg Res. 2009;157:290–5.
Witkiewicz AK, Balaji U, Knudsen ES. Systematically defining single-gene determinants of response to neoadjuvant chemotherapy reveals specific biomarkers. Clin Cancer Res. 2014;20:4837–48.
Stoica GE, Franke TF, Moroni M, Mueller S, Morgan E, Iann MC, et al. Effect of estradiol on estrogen receptor-alpha gene expression and activity can be modulated by the ErbB2/PI 3-K/Akt pathway. Oncogene. 2003;22:7998–8011.
Osborne CK, Shou J, Massarweh S, Schiff R. Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clin Cancer Res. 2005;11:865s–70s.
Presti D, Quaquarini E. The PI3K/AKT/mTOR and CDK4/6 pathways in endocrine resistant HR+/HER2- metastatic breast cancer: biological mechanisms and new treatments. Cancers. 2019;11:1242.
Citro S, Miccolo C, Meloni L, Chiocca S. PI3K/mTOR mediate mitogen-dependent HDAC1 phosphorylation in breast cancer: a novel regulation of estrogen receptor expression. J Mol Cell Biol. 2015;7:132–42.
Khaled WT, Lee SC, Stingl J, Chen XF, Ali HR, Rueda OM, et al. BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells. Nat Commun. 2015;6:5987.
Yang G, Zanudo JGT, Albert R. Target control in logical models using the domain of influence of nodes. Front Physiol. 2018;9:454.
Huang S, Eichler G, Bar-Yam Y, Ingber DE. Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett. 2005;94:128701.
Joo JI, Zhou JX, Huang S, Cho KH. Determining relative dynamic stability of cell states using boolean network model. Sci Rep. 2018;8:12077.
Chou CW, Wu MS, Huang WC, Chen CC. HDAC inhibition decreases the expression of EGFR in colorectal cancer cells. PLoS One. 2011;6:e18087.
Zhang CH, Wang J, Zhang LX, Lu YH, Ji TH, Xu L, et al. Shikonin reduces tamoxifen resistance through long non-coding RNA uc.57. Oncotarget. 2017;8:88658–69.
Muller BM, Jana L, Kasajima A, Lehmann A, Prinzler J, Budczies J, et al. Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer–overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC Cancer. 2013;13:215.
Bicaku E, Marchion DC, Schmitt ML, Munster PN. Selective inhibition of histone deacetylase 2 silences progesterone receptor-mediated signaling. Cancer Res. 2008;68:1513–9.
Liu H, Chen S, Yao X, Li Y, Chen CH, Liu J, et al. Histone deacetylases 1 and 2 regulate the transcriptional programs of nephron progenitors and renal vesicles. Development. 2018;145:dev153619.
Linares A, Dalenc F, Balaguer P, Boulle N, Cavailles V. Manipulating protein acetylation in breast cancer: a promising approach in combination with hormonal therapies?. J Biomed Biotechnol. 2011;2011:856985.
Luc S, Huang JL, McEldoon JL, Somuncular E, Li D, Rhodes C, et al. Bcl11a deficiency leads to hematopoietic stem cell defects with an aging-like phenotype. Cell Rep. 2016;16:3181–94.
Senawong T, Peterson VJ, Leid M. BCL11A-dependent recruitment of SIRT1 to a promoter template in mammalian cells results in histone deacetylation and transcriptional repression. Arch Biochem Biophys. 2005;434:316–25.
Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008;322:1839–42.
Bauer DE, Orkin SH. Hemoglobin switching's surprise: the versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. Curr Opin Genet Dev. 2015;33:62–70.
Moody RR, Lo MC, Meagher JL, Lin CC, Stevers NO, Tinsley SL, et al. Probing the interaction between the histone methyltransferase/deacetylase subunit RBBP4/7 and the transcription factor BCL11A in epigenetic complexes. J Biol Chem. 2018;293:2125–36.
Khaled WT, Lee SC, Stingl J, Chen X, Ali HR, Rueda OM, et al. BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells. Nat Commun. 2015;6:5987.
Substance Nomenclature:
0 (Antineoplastic Agents, Hormonal)
0 (BCL11A protein, human)
0 (ESR1 protein, human)
0 (Estrogen Receptor alpha)
0 (Repressor Proteins)
094ZI81Y45 (Tamoxifen)
EC 3.5.1.98 (HDAC1 protein, human)
EC 3.5.1.98 (HDAC2 protein, human)
EC 3.5.1.98 (Histone Deacetylase 1)
EC 3.5.1.98 (Histone Deacetylase 2)
Entry Date(s):
Date Created: 20211130 Date Completed: 20220218 Latest Revision: 20220218
Update Code:
20240104
DOI:
10.1158/0008-5472.CAN-21-0621
PMID:
34845001
Czasopismo naukowe
Basal-like breast cancer is the most aggressive breast cancer subtype with the worst prognosis. Despite its high recurrence rate, chemotherapy is the only treatment for basal-like breast cancer, which lacks expression of hormone receptors. In contrast, luminal A tumors express ERα and can undergo endocrine therapy for treatment. Previous studies have tried to develop effective treatments for basal-like patients using various therapeutics but failed due to the complex and dynamic nature of the disease. In this study, we performed a transcriptomic analysis of patients with breast cancer to construct a simplified but essential molecular regulatory network model. Network control analysis identified potential targets and elucidated the underlying mechanisms of reprogramming basal-like cancer cells into luminal A cells. Inhibition of BCL11A and HDAC1/2 effectively drove basal-like cells to transition to luminal A cells and increased ERα expression, leading to increased tamoxifen sensitivity. High expression of BCL11A and HDAC1/2 correlated with poor prognosis in patients with breast cancer. These findings identify mechanisms regulating breast cancer phenotypes and suggest the potential to reprogram basal-like breast cancer cells to enhance their targetability. SIGNIFICANCE: A network model enables investigation of mechanisms regulating the basal-to-luminal transition in breast cancer, identifying BCL11A and HDAC1/2 as optimal targets that can induce basal-like breast cancer reprogramming and endocrine therapy sensitivity.
(©2021 American Association for Cancer Research.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies