Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Single-Molecule Fluorescence Spectroscopy Approaches for Probing Fast Biomolecular Dynamics and Interactions.

Tytuł:
Single-Molecule Fluorescence Spectroscopy Approaches for Probing Fast Biomolecular Dynamics and Interactions.
Autorzy:
Wang Z; Department of Bioengineering, University of California at Merced, Merced, CA, USA.; NSF CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, CA, USA.
Mothi N; Chemistry and Chemical Biology Graduate Program, University of California at Merced, Merced, CA, USA.; NSF CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, CA, USA.
Muñoz V; Department of Bioengineering and Center for Cellular and Biomolecular Machines, University of California Merced, Merced, CA, USA. .
Źródło:
Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2022; Vol. 2376, pp. 235-246.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
MeSH Terms:
Single Molecule Imaging*
Spectrometry, Fluorescence*
Fluorescence Resonance Energy Transfer ; Fluorescent Dyes ; Photons ; Protein Conformation
References:
Wang Z, Campos LA, Muñoz V (2016) Chapter fourteen—Single-molecule fluorescence studies of fast protein folding. Methods Enzymol 581:417–459. (PMID: 10.1016/bs.mie.2016.09.011)
Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283(5408):1676–1683. (PMID: 10.1126/science.283.5408.1676)
Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci U S A 58(2):719–726. (PMID: 10.1073/pnas.58.2.719)
Seidel R, Dekker C (2007) Single-molecule studies of nucleic acid motors. Curr Opin Struct Biol 17(1):80–86. (PMID: 10.1016/j.sbi.2006.12.003)
Zhuang X (2005) Single-Molecule RNA Science. Annu Rev Biophys Biomol Struct 34(1):399–414. (PMID: 10.1146/annurev.biophys.34.040204.144641)
Goodson KA, Wang Z, Haeusler AR, Kahn JD, English DS (2013) LacI-DNA-IPTG loops: equilibria among conformations by single-molecule FRET. J Phys Chem B 117(16):4713–4722. (PMID: 10.1021/jp308930c)
Chris A, Ferreon M, Deniz AA (2012) Protein folding at single-molecule resolution. Biochim Biophys Acta 1814(8):1021–1029.
Haran G (2012) How, when and why proteins collapse: the relation to folding. Curr Opin Struct Biol 22(1):14–20. (PMID: 10.1016/j.sbi.2011.10.005)
Schuler B, Eaton WA (2008) Protein folding studied by single molecule FRET. Curr Opin Struct Biol 18(1):16–26. (PMID: 10.1016/j.sbi.2007.12.003)
Michalet X, Weiss S, Jäger M (2006) Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem Rev 106:1785–1813. (PMID: 10.1021/cr0404343)
Aznauryan M, Nettels D, Holla A, Hofmann H, Schuler B (2013) Single-molecule spectroscopy of cold denaturation and the temperature-induced collapse of unfolded proteins. J Am Chem Soc 135(38):14040–14043. (PMID: 10.1021/ja407009w)
Schuler B, Soranno A, Hofmann H, Nettels D (2016) Single-molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annu Rev Biophys 45(1):207–231. (PMID: 10.1146/annurev-biophys-062215-010915)
Hofmann H (2014) Single-molecule spectroscopy of unfolded proteins and chaperonin action. Biol Chem 395(7–8):689–698. (PMID: 10.1515/hsz-2014-0132)
Smiley RD, Hammes GG (2006) Single molecule studies of enzyme mechanisms. Chem Rev 106(8):3080–3094. (PMID: 10.1021/cr0502955)
Chung HS, Eaton WA (2013) Single-molecule fluorescence probes dynamics of barrier crossing. Nature 502(7473):685–688. (PMID: 10.1038/nature12649)
Chung HS, Louis JM, Eaton WA (2010) Distinguishing between protein dynamics and dye photophysics in single-molecule FRET experiments. Biophys J 98(4):696–706. (PMID: 10.1016/j.bpj.2009.12.4322)
Campos LA, Sadqi M, Liu J, Wang X, English DS, Muñoz V (2013) Gradual disordering of the native state on a slow two-state folding protein monitored by single-molecule fluorescence spectroscopy and NMR. J Phys Chem B 117(42):13120–13131. (PMID: 10.1021/jp403051k)
Michalet X et al (2014) Silicon Photon-Counting Avalanche Diodes for Single-Molecule Fluorescence Spectroscopy. IEEE J Sel Top Quantum Electron 20(6):248–267. (PMID: 10.1109/JSTQE.2014.2341568)
Grewer C, Brauer H-D (1994) Mechanism of the triplet-state quenching by molecular oxygen in solution. J Phys Chem 98(16):4230–4235. (PMID: 10.1021/j100067a006)
Campos LA, Liu J, Wang X, Ramanathan R, English DS, Muñoz V (2011) A photoprotection strategy for microsecond-resolution single-molecule fluorescence spectroscopy. Nat Methods 8(2):143–146. (PMID: 10.1038/nmeth.1553)
Contributed Indexing:
Keywords: Förster resonance energy transfer; Photoblinking and photobleaching; Photon count rate; Shot noise; Single-molecule fluorescence spectroscopy; Time resolution; Triplet buildup
Substance Nomenclature:
0 (Fluorescent Dyes)
Entry Date(s):
Date Created: 20211130 Date Completed: 20220118 Latest Revision: 20220118
Update Code:
20240104
DOI:
10.1007/978-1-0716-1716-8_13
PMID:
34845613
Czasopismo naukowe
Single-molecule fluorescence spectroscopy, and particularly its Förster resonance energy transfer implementation (SM-FRET), provides the opportunity to resolve the stochastic conformational fluctuations undergone by individual protein molecules while they fold-unfold, bind to their partners, or carry out catalysis. Such information is key to resolve the microscopic pathways and mechanisms underlying such processes, and cannot be obtained from bulk experiments. To fully resolve protein conformational dynamics, SM-FRET experiments need to reach microsecond, and even sub-microsecond, time resolutions. The key to reach such resolution lies in increasing the efficiency at which photons emitted by a single molecule are collected and detected by the instrument (photon count rates). In this chapter, we describe basic procedures that an end user can follow to optimize the confocal microscope optics in order to maximize the photon count rates. We also discuss the use of photoprotection cocktails specifically designed to reduce fluorophore triplet buildup at high irradiance (the major cause of limiting photon emission rates) while improving the mid-term photostability of the fluorophores. Complementary strategies based on the data analysis are discussed in depth by other authors in Chap. 14 .
(© 2022. Springer Science+Business Media, LLC, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies