Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Intracerebral Proinflammatory Cytokine Increase in Surgically Evacuated Intracerebral Hemorrhage: A Microdialysis Study.

Tytuł:
Intracerebral Proinflammatory Cytokine Increase in Surgically Evacuated Intracerebral Hemorrhage: A Microdialysis Study.
Autorzy:
Tobieson L; Departments of Neurosurgery in Linköping and Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden. .
Gard A; Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden.
Ruscher K; Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden.
Marklund N; Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden.; Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skåne University Hopsital, Lund, Sweden.
Źródło:
Neurocritical care [Neurocrit Care] 2022 Jun; Vol. 36 (3), pp. 876-887. Date of Electronic Publication: 2021 Nov 30.
Typ publikacji:
Journal Article; Observational Study
Język:
English
Imprint Name(s):
Original Publication: Totowa, NJ : Humana Press, c2004-
MeSH Terms:
Cerebral Hemorrhage*/pathology
Cytokines*/metabolism
Inflammation Mediators*/metabolism
Humans ; Microdialysis ; Vascular Endothelial Growth Factor A
References:
Feigin VL, Norrving B, Mensah GA. Global burden of stroke. Circ Res. 2017;120:439–48. (PMID: 2815409610.1161/CIRCRESAHA.116.308413)
Hemphill JC 3rd, Greenberg SM, Anderson CS, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals From the American Heart Association/American Stroke Association. Stroke J Cereb Circ. 2015;46:2032–60. (PMID: 10.1161/STR.0000000000000069)
Steiner T, Al-Shahi Salman R, Beer R, et al. European Stroke Organisation (ESO) guidelines for the management of spontaneous intracerebral hemorrhage. Int J Stroke Off J Int Stroke Soc. 2014;9:840–55. (PMID: 10.1111/ijs.12309)
Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet. 2013;382:397–408. (PMID: 23726393390660910.1016/S0140-6736(13)60986-1)
Prasad K, Mendelow AD, Gregson B. Surgery for primary supratentorial intracerebral haemorrhage. Cochrane Database Syst Rev. 2008; Cd000200.
Mendelow AD, Gregson BA, Fernandes HM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet. 2005;365:387–97. (PMID: 1568045310.1016/S0140-6736(05)70233-6)
Sondag L, Schreuder F, Boogaarts HD, et al. Neurosurgical intervention for supratentorial intracerebral hemorrhage. Ann Neurol. 2020;88:239–50. (PMID: 32239722749716210.1002/ana.25732)
Qureshi AI, Palesch YY, Martin R, et al. Effect of systolic blood pressure reduction on hematoma expansion, perihematomal edema, and 3-month outcome among patients with intracerebral hemorrhage: results from the antihypertensive treatment of acute cerebral hemorrhage study. Arch Neurol. 2010;67:570–6. (PMID: 20457956556204310.1001/archneurol.2010.61)
Qureshi AI, Hanel RA, Kirmani JF, Yahia AM, Hopkins LN. Cerebral blood flow changes associated with intracerebral hemorrhage. Neurosurg Clin N Am. 2002;13:355–70. (PMID: 1248692510.1016/S1042-3680(02)00012-8)
Qureshi AI, Wilson DA, Hanley DF, Traystman RJ. No evidence for an ischemic penumbra in massive experimental intracerebral hemorrhage. Neurology. 1999;52:266–72. (PMID: 993294210.1212/WNL.52.2.266)
Kim-Han JS, Kopp SJ, Dugan LL, Diringer MN. Perihematomal mitochondrial dysfunction after intracerebral hemorrhage. Stroke J Cereb Circ. 2006;37:2457–62. (PMID: 10.1161/01.STR.0000240674.99945.4e)
Nilsson OG, Polito A, Saveland H, Ungerstedt U, Nordstrom CH. Are primary supratentorial intracerebral hemorrhages surrounded by a biochemical penumbra? A microdialysis study. Neurosurgery. 2006;59:521–8; discussion-8.
Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J. Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol Neurobiol. 2017;54:1874–86. (PMID: 2689439610.1007/s12035-016-9785-6)
Gao Z, Wang J, Thiex R, Rogove AD, Heppner FL, Tsirka SE. Microglial activation and intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:51–3. (PMID: 1906608210.1007/978-3-211-09469-3_11)
Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91:461–553. (PMID: 2152773110.1152/physrev.00011.2010)
Taylor RA, Chang CF, Goods BA, et al. TGF-β1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage. J Clin Investig. 2017;127:280–92. (PMID: 2789346010.1172/JCI88647)
Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373:1632–44. (PMID: 19427958313848610.1016/S0140-6736(09)60371-8)
Aronowski J, Hall CE. New horizons for primary intracerebral hemorrhage treatment: experience from preclinical studies. Neurol Res. 2005;27:268–79. (PMID: 1584521010.1179/016164105X25225)
Lan X, Han X, Liu X, Wang J. Inflammatory responses after intracerebral hemorrhage: from cellular function to therapeutic targets. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2018:271678x18805675.
Wang J, Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2007;27:894–908. (PMID: 10.1038/sj.jcbfm.9600403)
Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol. 2014;115:25–44. (PMID: 2429154410.1016/j.pneurobio.2013.11.003)
Beez T, Steiger HJ, Etminan N. Pharmacological targeting of secondary brain damage following ischemic or hemorrhagic stroke, traumatic brain injury, and bacterial meningitis—a systematic review and meta-analysis. BMC Neurol. 2017;17:209. (PMID: 29212462571973810.1186/s12883-017-0994-z)
Poungvarin N, Bhoopat W, Viriyavejakul A, et al. Effects of dexamethasone in primary supratentorial intracerebral hemorrhage. N Engl J Med. 1987;316:1229–33. (PMID: 357438310.1056/NEJM198705143162001)
Hillered L, Persson L, Nilsson P, Ronne-Engstrom E, Enblad P. Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis. Curr Opin Crit Care. 2006;12:112–8. (PMID: 1654378510.1097/01.ccx.0000216576.11439.df)
Ungerstedt U. Microdialysis–principles and applications for studies in animals and man. J Intern Med. 1991;230:365–73. (PMID: 191943210.1111/j.1365-2796.1991.tb00459.x)
Hutchinson PJ, Jalloh I, Helmy A, et al. Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Med. 2015;41:1517–28. (PMID: 26194024455065410.1007/s00134-015-3930-y)
Hillman J, Aneman O, Anderson C, Sjogren F, Saberg C, Mellergard P. A microdialysis technique for routine measurement of macromolecules in the injured human brain. Neurosurgery. 2005;56:1264–8; discussion 8–70.
Clausen F, Marklund N, Hillered L. Acute inflammatory biomarker responses to diffuse traumatic brain injury in the rat monitored by a novel microdialysis technique. J Neurotrauma. 2019;36:201–11. (PMID: 2979039810.1089/neu.2018.5636)
Mellergard P, Aneman O, Sjogren F, Saberg C, Hillman J. Differences in cerebral extracellular response of interleukin-1 beta, interleukin-6, and interleukin-10 after subarachnoid hemorrhage or severe head trauma in humans. Neurosurgery. 2011;68:12–9. (PMID: 2115075110.1227/NEU.0b013e3181ef2a40)
Mellergard P, Sjogren F, Hillman J. Release of VEGF and FGF in the extracellular space following severe subarachnoidal haemorrhage or traumatic head injury in humans. Br J Neurosurg. 2010;24:261–7. (PMID: 2046545410.3109/02688690903521605)
Hillman J, Aneman O, Persson M, Andersson C, Dabrosin C, Mellergard P. Variations in the response of interleukins in neurosurgical intensive care patients monitored using intracerebral microdialysis. J Neurosurg. 2007;106:820–5. (PMID: 1754252510.3171/jns.2007.106.5.820)
Helmy A, Carpenter KL, Menon DK, Pickard JD, Hutchinson PJ. The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2011;31:658–70. (PMID: 10.1038/jcbfm.2010.142)
Helmy A, Carpenter KL, Skepper JN, Kirkpatrick PJ, Pickard JD, Hutchinson PJ. Microdialysis of cytokines: methodological considerations, scanning electron microscopy, and determination of relative recovery. J Neurotrauma. 2009;26:549–61. (PMID: 1919617510.1089/neu.2008.0719)
Dyhrfort P, Shen Q, Clausen F, et al. Monitoring of protein biomarkers of inflammation in human traumatic brain injury using microdialysis and proximity extension assay technology in neurointensive care. J Neurotrauma. 2019;36:2872–85. (PMID: 31017044676159610.1089/neu.2018.6320)
Dziedzic T, Bartus S, Klimkowicz A, Motyl M, Slowik A, Szczudlik A. Intracerebral hemorrhage triggers interleukin-6 and interleukin-10 release in blood. Stroke J Cereb Circ. 2002;33:2334–5. (PMID: 10.1161/01.STR.0000027211.73567.FA)
Kim JS, Yoon SS, Kim YH, Ryu JS. Serial measurement of interleukin-6, transforming growth factor-beta, and S-100 protein in patients with acute stroke. Stroke J Cereb Circ. 1996;27:1553–7. (PMID: 10.1161/01.STR.27.9.1553)
Castillo J, Davalos A, Alvarez-Sabin J, et al. Molecular signatures of brain injury after intracerebral hemorrhage. Neurology. 2002;58:624–9. (PMID: 1186514310.1212/WNL.58.4.624)
Silva Y, Leira R, Tejada J, Lainez JM, Castillo J, Davalos A. Molecular signatures of vascular injury are associated with early growth of intracerebral hemorrhage. Stroke J Cereb Circ. 2005;36:86–91. (PMID: 10.1161/01.STR.0000149615.51204.0b)
Tobieson L, Rossitti S, Zsigmond P, Hillman J, Marklund N. Persistent metabolic disturbance in the perihemorrhagic zone despite a normalized cerebral blood flow following surgery for intracerebral hemorrhage. Neurosurgery. 2018. https://doi.org/10.1093/neuros/nyy179 .
Engstrom M, Polito A, Reinstrup P, et al. Intracerebral microdialysis in severe brain trauma: the importance of catheter location. J Neurosurg. 2005;102:460–9. (PMID: 1579638010.3171/jns.2005.102.3.0460)
Hutchinson P, O’Phelan K. International multidisciplinary consensus conference on multimodality monitoring: cerebral metabolism. Neurocrit Care. 2014;21(Suppl 2):S148–58. (PMID: 2520867310.1007/s12028-014-0035-3)
Hillman J, Milos P, Yu ZQ, Sjogren F, Anderson C, Mellergard P. Intracerebral microdialysis in neurosurgical intensive care patients utilising catheters with different molecular cut-off (20 and 100 kD). Acta Neurochir. 2006;148:319–24; discussion 24.
Wheelock AM, Wheelock CE. Trials and tribulations of ’omics data analysis: assessing quality of SIMCA-based multivariate models using examples from pulmonary medicine. Mol BioSyst. 2013;9:2589–96. (PMID: 2399982210.1039/c3mb70194h)
Mayne M, Ni W, Yan HJ, et al. Antisense oligodeoxynucleotide inhibition of tumor necrosis factor-alpha expression is neuroprotective after intracerebral hemorrhage. Stroke J Cereb Circ. 2001;32:240–8. (PMID: 10.1161/01.STR.32.1.240)
Xi G, Hua Y, Bhasin RR, Ennis SR, Keep RF, Hoff JT. Mechanisms of edema formation after intracerebral hemorrhage: effects of extravasated red blood cells on blood flow and blood-brain barrier integrity. Stroke J Cereb Circ. 2001;32:2932–8. (PMID: 10.1161/hs1201.099820)
Lu A, Tang Y, Ran R, Ardizzone TL, Wagner KR, Sharp FR. Brain genomics of intracerebral hemorrhage. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2006;26:230–52. (PMID: 10.1038/sj.jcbfm.9600183)
Wagner KR, Beiler S, Beiler C, et al. Delayed profound local brain hypothermia markedly reduces interleukin-1beta gene expression and vasogenic edema development in a porcine model of intracerebral hemorrhage. Acta Neurochir Suppl. 2006;96:177–82. (PMID: 1667145010.1007/3-211-30714-1_39)
Engelhardt S, Patkar S, Ogunshola OO. Cell-specific blood–brain barrier regulation in health and disease: a focus on hypoxia. Br J Pharmacol. 2014;171:1210–30. (PMID: 24641185395279910.1111/bph.12489)
Zhang ZG, Zhang L, Jiang Q, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Investig. 2000;106:829–38. (PMID: 1101807051781410.1172/JCI9369)
Helmy A, Guilfoyle MR, Carpenter KL, Pickard JD, Menon DK, Hutchinson PJ. Recombinant human interleukin-1 receptor antagonist promotes M1 microglia biased cytokines and chemokines following human traumatic brain injury. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2016;36:1434–48. (PMID: 10.1177/0271678X15620204)
Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol. 2017;13:420–33. (PMID: 28524175557593810.1038/nrneurol.2017.69)
Liu X, Liu J, Zhao S, et al. Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke J Cereb Circ. 2016;47:498–504. (PMID: 10.1161/STROKEAHA.115.012079)
Marín-Teva JL, Cuadros MA, Martín-Oliva D, Navascués J. Microglia and neuronal cell death. Neuron Glia Biol. 2011;7:25–40. (PMID: 2237703310.1017/S1740925X12000014)
Mracsko E, Veltkamp R. Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci. 2014;8:388. (PMID: 25477782423832310.3389/fncel.2014.00388)
Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92:463–77. (PMID: 20713126299140710.1016/j.pneurobio.2010.08.001)
Zhao X, Grotta J, Gonzales N, Aronowski J. Hematoma resolution as a therapeutic target: the role of microglia/macrophages. Stroke J Cereb Circ. 2009;40:S92–4. (PMID: 10.1161/STROKEAHA.108.533158)
Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35. (PMID: 1251187310.1038/nri978)
Pelegrin P, Surprenant A. Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. Embo J. 2009;28:2114–27. (PMID: 19536133269939210.1038/emboj.2009.163)
Lopez-Castejón G, Baroja-Mazo A, Pelegrín P. Novel macrophage polarization model: from gene expression to identification of new anti-inflammatory molecules. Cell Mol Life Sci CMLS. 2011;68:3095–107. (PMID: 2118846110.1007/s00018-010-0609-y)
Cavaillon JM. Pro-versus anti-inflammatory cytokines: myth or reality. Cell Mol Biol (Noisy-le-Grand, France). 2001;47:695–702.
Commins SP, Borish L, Steinke JW. Immunologic messenger molecules: cytokines, interferons, and chemokines. J Allergy Clin Immunol. 2010;125:S53-72. (PMID: 1993291810.1016/j.jaci.2009.07.008)
Hutchinson PJ, O’Connell MT, Rothwell NJ, et al. Inflammation in human brain injury: intracerebral concentrations of IL-1alpha, IL-1beta, and their endogenous inhibitor IL-1ra. J Neurotrauma. 2007;24:1545–57. (PMID: 1797061810.1089/neu.2007.0295)
Shiozaki T, Hayakata T, Tasaki O, et al. Cerebrospinal fluid concentrations of anti-inflammatory mediators in early-phase severe traumatic brain injury. Shock. 2005;23:406–10. (PMID: 1583430510.1097/01.shk.0000161385.62758.24)
Ungerstedt U, Rostami E. Microdialysis in neurointensive care. Curr Pharm Des. 2004;10:2145–52. (PMID: 1528189010.2174/1381612043384105)
Fahlstrom A, Tobieson L, Redebrandt HN, et al. Differences in neurosurgical treatment of intracerebral haemorrhage: a nation-wide observational study of 578 consecutive patients. Acta Neurochir. 2019.
Contributed Indexing:
Keywords: Brain injury; Cytokine; Inflammation mediators; Intracranial hemorrhage; Microdialysis; Stroke
Substance Nomenclature:
0 (Cytokines)
0 (Inflammation Mediators)
0 (Vascular Endothelial Growth Factor A)
Entry Date(s):
Date Created: 20211201 Date Completed: 20220519 Latest Revision: 20220901
Update Code:
20240105
PubMed Central ID:
PMC9110446
DOI:
10.1007/s12028-021-01389-9
PMID:
34850333
Czasopismo naukowe
Background: Treatment options for spontaneous intracerebral hemorrhage (ICH) are limited. A possible inflammatory response in the brain tissue surrounding an ICH may exacerbate the initial injury and could be a target for treatment of subsequent secondary brain injury. The study objective was to compare levels of inflammatory mediators in the interstitial fluid of the perihemorrhagic zone (PHZ) and in seemingly normal cortex (SNX) in the acute phase after surgical evacuation of ICH, with the hypothesis being that a difference could be demonstrated between the PHZ and the SNX.
Methods: In this observational study, ten patients needing surgical evacuation of supratentorial ICH received two cerebral microdialysis catheters: one in the PHZ and one in the SNX that is remote from the ICH. The microdialysate was analyzed for energy metabolites (including lactate pyruvate ratio and glucose) and for inflammatory mediators by using a multiplex immunoassay of 27 cytokines and chemokines at 6-10 h, 20-26 h, and 44-50 h after surgery.
Results: A metabolic crisis, indicated by altered energy metabolic markers, that persisted throughout the observation period was observed in the PHZ when compared with the SNX. Proinflammatory cytokines interleukin (IL) 8, tumor necrosis factor α, IL-2, IL-1β, IL-6 and interferon γ, anti-inflammatory cytokine IL-13, IL-4, and vascular endothelial growth factor A were significantly higher in PHZ compared with SNX and were most prominent at 20-26 h following ICH evacuation.
Conclusions: Higher levels of both proinflammatory and anti-inflammatory cytokines in the perihemorrhagic brain tissue implies a complex role for inflammatory mediators in the secondary injury cascades following ICH surgery, suggesting a need for targeted pharmacological interventions.
(© 2021. The Author(s).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies