Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Global similarity, and some key differences, in the metagenomes of Swedish varroa-surviving and varroa-susceptible honeybees.

Tytuł:
Global similarity, and some key differences, in the metagenomes of Swedish varroa-surviving and varroa-susceptible honeybees.
Autorzy:
Thaduri S; Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden.
Marupakula S; Department of Forestry Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden.
Terenius O; Department of Cellular and Molecular Biology, BioMedical Centre, Uppsala University, Husargatan 3, 751-24, Uppsala, Sweden.
Onorati P; Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden.
Tellgren-Roth C; SciLife Lab, BioMedical Centre, Uppsala University, 751 08, Uppsala, Sweden.
Locke B; Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden.
de Miranda JR; Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden. .
Źródło:
Scientific reports [Sci Rep] 2021 Dec 01; Vol. 11 (1), pp. 23214. Date of Electronic Publication: 2021 Dec 01.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Metagenome*
Bees/*genetics
Bees/*parasitology
Varroidae/*physiology
Animals ; Bees/microbiology ; Bees/virology ; Genome, Bacterial ; Genome, Insect ; Genome, Viral ; RNA Viruses/genetics ; RNA Viruses/isolation & purification ; Sweden
References:
BMC Genomics. 2017 Mar 2;18(1):207. (PMID: 28249569)
Sci Rep. 2021 Jun 11;11(1):12359. (PMID: 34117296)
Insects. 2020 Dec 08;11(12):. (PMID: 33302465)
Sci Rep. 2016 Feb 29;6:22265. (PMID: 26923109)
Nucleic Acids Res. 2019 Jul 2;47(W1):W636-W641. (PMID: 30976793)
Trends Parasitol. 2020 Jul;36(7):592-606. (PMID: 32456963)
Annu Rev Virol. 2019 Sep 29;6(1):49-69. (PMID: 31185188)
Mol Biol Evol. 1993 May;10(3):512-26. (PMID: 8336541)
PLoS Pathog. 2014 Aug 21;10(8):e1004323. (PMID: 25144447)
Mol Ecol. 2017 Jul;26(14):3603-3617. (PMID: 28378497)
Nat Rev Microbiol. 2016 Jun;14(6):374-84. (PMID: 27140688)
ISME J. 2014 Dec;8(12):2369-79. (PMID: 24763369)
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549. (PMID: 29722887)
PLoS One. 2012;7(7):e41250. (PMID: 22829932)
Mol Syst Biol. 2011 Oct 11;7:539. (PMID: 21988835)
PLoS One. 2012;7(11):e48276. (PMID: 23133626)
PLoS One. 2016 Dec 21;11(12):e0167752. (PMID: 28002470)
Nat Commun. 2019 Feb 11;10(1):692. (PMID: 30741934)
PLoS One. 2017 Aug 17;12(8):e0182814. (PMID: 28817641)
J Clin Microbiol. 2005 Feb;43(2):615-9. (PMID: 15695654)
Sci Rep. 2018 Jan 31;8(1):2019. (PMID: 29386588)
Sci Rep. 2018 Jun 26;8(1):9678. (PMID: 29946153)
Ecol Evol. 2011 Dec;1(4):451-8. (PMID: 22393513)
ISME J. 2017 May;11(5):1232-1244. (PMID: 28234349)
PLoS One. 2014 Jun 13;9(6):e99998. (PMID: 24926792)
Int J Parasitol. 2020 Jun;50(6-7):433-447. (PMID: 32380096)
Appl Environ Microbiol. 2006 Jul;72(7):5069-72. (PMID: 16820507)
Insect Mol Biol. 2019 Aug;28(4):455-472. (PMID: 30652367)
PeerJ. 2019 Mar 21;7:e6305. (PMID: 30923646)
PLoS One. 2018 Dec 6;13(12):e0206938. (PMID: 30521535)
Insects. 2020 Jul 18;11(7):. (PMID: 32708479)
Proc Biol Sci. 2019 Jan 30;286(1895):20182452. (PMID: 30963951)
ISME J. 2020 Mar;14(3):801-814. (PMID: 31836840)
Nat Commun. 2015 Aug 06;6:7991. (PMID: 26246313)
mBio. 2015 May 19;6(3):e00193-15. (PMID: 25991680)
Sci Rep. 2019 Apr 17;9(1):6221. (PMID: 30996279)
Appl Environ Microbiol. 2014 Dec;80(23):7378-87. (PMID: 25239900)
Viruses. 2020 May 23;12(5):. (PMID: 32456246)
Mol Ecol. 2017 May;26(9):2576-2590. (PMID: 28207182)
Am Nat. 2018 Aug;192(2):131-141. (PMID: 30016168)
Proc Biol Sci. 2007 Feb 7;274(1608):303-13. (PMID: 17164193)
Environ Microbiol. 2018 Dec;20(12):4612-4628. (PMID: 30452113)
J Gen Virol. 1974 Nov;25(2):175-86. (PMID: 4215869)
Ecol Evol. 2018 Apr 16;8(10):4743-4756. (PMID: 29876054)
Mol Ecol. 2018 Apr;27(8):2057-2066. (PMID: 29164717)
J Invertebr Pathol. 2010 Jan;103 Suppl 1:S96-119. (PMID: 19909970)
Insects. 2021 Jun 09;12(6):. (PMID: 34207891)
Viruses. 2015 Jun 23;7(6):3285-309. (PMID: 26110586)
PLoS Biol. 2019 Oct 10;17(10):e3000502. (PMID: 31600204)
Sci Rep. 2021 Apr 28;11(1):9133. (PMID: 33911144)
J Invertebr Pathol. 2010 Jan;103 Suppl 1:S80-95. (PMID: 19909973)
Proc Natl Acad Sci U S A. 2019 Jan 29;116(5):1792-1801. (PMID: 30647116)
PLoS One. 2019 Jun 13;14(6):e0217975. (PMID: 31194803)
Viruses. 2020 Oct 29;12(11):. (PMID: 33138298)
Insects. 2020 Apr 10;11(4):. (PMID: 32290327)
J Microbiol Methods. 2007 May;69(2):330-9. (PMID: 17391789)
Sci Rep. 2017 Jul 31;7(1):6925. (PMID: 28761114)
Int J Syst Evol Microbiol. 2021 Sep;71(9):. (PMID: 34546865)
Front Microbiol. 2020 May 28;11:943. (PMID: 32547504)
Virol J. 2022 Jan 15;19(1):12. (PMID: 35033134)
Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):11002-7. (PMID: 22711827)
Nat Methods. 2010 May;7(5):335-6. (PMID: 20383131)
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10305-10310. (PMID: 30249635)
Appl Environ Microbiol. 2012 Apr;78(8):2830-40. (PMID: 22307297)
Evol Bioinform Online. 2016 Jun 20;12(Suppl 2):13-25. (PMID: 27375356)
Nat Genet. 2014 Oct;46(10):1081-8. (PMID: 25151355)
Front Microbiol. 2016 Aug 16;7:1255. (PMID: 27579024)
PLoS One. 2012;7(3):e33188. (PMID: 22427985)
Front Microbiol. 2018 May 22;9:1037. (PMID: 29872428)
SCR Organism:
Deformed wing virus; Sacbrood virus
Entry Date(s):
Date Created: 20211202 Date Completed: 20220118 Latest Revision: 20231108
Update Code:
20240105
PubMed Central ID:
PMC8636477
DOI:
10.1038/s41598-021-02652-x
PMID:
34853367
Czasopismo naukowe
There is increasing evidence that honeybees (Apis mellifera L.) can adapt naturally to survive Varroa destructor, the primary cause of colony mortality world-wide. Most of the adaptive traits of naturally varroa-surviving honeybees concern varroa reproduction. Here we investigate whether factors in the honeybee metagenome also contribute to this survival. The quantitative and qualitative composition of the bacterial and viral metagenome fluctuated greatly during the active season, but with little overall difference between varroa-surviving and varroa-susceptible colonies. The main exceptions were Bartonella apis and sacbrood virus, particularly during early spring and autumn. Bombella apis was also strongly associated with early and late season, though equally for all colonies. All three affect colony protein management and metabolism. Lake Sinai virus was more abundant in varroa-surviving colonies during the summer. Lake Sinai virus and deformed wing virus also showed a tendency towards seasonal genetic change, but without any distinction between varroa-surviving and varroa-susceptible colonies. Whether the changes in these taxa contribute to survival or reflect demographic differences between the colonies (or both) remains unclear.
(© 2021. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies