Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A continent-wide high genetic load in African buffalo revealed by clines in the frequency of deleterious alleles, genetic hitchhiking and linkage disequilibrium.

Tytuł:
A continent-wide high genetic load in African buffalo revealed by clines in the frequency of deleterious alleles, genetic hitchhiking and linkage disequilibrium.
Autorzy:
van Hooft P; Wildlife Ecology and Conservation Group, Wageningen University, Wageningen, The Netherlands.
Getz WM; Department of Environmental Science Policy & Management, University of California, Berkeley, California, United States of America.; School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa.
Greyling BJ; Agricultural Research Council, Irene, South Africa.
Zwaan B; Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands.
Bastos ADS; Department of Zoology & Entomology, University of Pretoria, Hatfield, South Africa.
Źródło:
PloS one [PLoS One] 2021 Dec 09; Vol. 16 (12), pp. e0259685. Date of Electronic Publication: 2021 Dec 09 (Print Publication: 2021).
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science
MeSH Terms:
Genetic Load*
Quantitative Trait Loci*
Buffaloes/*genetics
Animals ; Gene Frequency ; Genetics, Population ; Linkage Disequilibrium ; Microsatellite Repeats ; Selection, Genetic ; South Africa
References:
Genetics. 1978 Jul;89(3):583-90. (PMID: 17248844)
PLoS One. 2014 Nov 05;9(11):e111778. (PMID: 25372610)
Sci Rep. 2019 Sep 19;9(1):13546. (PMID: 31537860)
Genetics. 2004 Jan;166(1):505-12. (PMID: 15020439)
BMC Bioinformatics. 2008 Jul 21;9:317. (PMID: 18644149)
Mol Ecol. 2006 Jun;15(7):1973-82. (PMID: 16689912)
PLoS Genet. 2007 Aug;3(8):e144. (PMID: 17722986)
Mol Ecol Resour. 2011 Mar;11(2):314-22. (PMID: 21429138)
Mol Ecol. 2007 Sep;16(17):3712-20. (PMID: 17845443)
Proc Biol Sci. 2011 Mar 22;278(1707):855-62. (PMID: 20861051)
Anim Genet. 2011 Aug;42(4):366-77. (PMID: 21749419)
J Comput Biol. 2006 Jul-Aug;13(6):1131-47. (PMID: 16901233)
Bioinformatics. 2012 Oct 1;28(19):2537-9. (PMID: 22820204)
Evolution. 1995 Dec;49(6):1038-1045. (PMID: 28568511)
Infect Genet Evol. 2016 Sep;43:203-12. (PMID: 27245150)
Animals (Basel). 2019 Mar 06;9(3):. (PMID: 30845681)
Nat Genet. 2018 Sep;50(9):1311-1317. (PMID: 30104759)
BMC Evol Biol. 2010 Apr 23;10:106. (PMID: 20416038)
Evolution. 1999 Aug;53(4):1259-1267. (PMID: 28565537)
Ecol Evol. 2015 Aug;5(16):3401-12. (PMID: 26380673)
Bull Math Biol. 2007 Oct;69(7):2249-59. (PMID: 17546476)
Genetica. 2011 Mar;139(3):353-67. (PMID: 21279823)
J Hered. 1992 Jul-Aug;83(4):287-98. (PMID: 1401875)
Genome Res. 2004 Oct;14(10A):1987-98. (PMID: 15466297)
Mol Ecol. 2013 Jan;22(2):341-53. (PMID: 23171126)
J Hered. 2011 Nov-Dec;102(6):697-704. (PMID: 22013019)
Mol Biol Evol. 2021 Jun 25;38(7):2986-3003. (PMID: 33591322)
BMC Genomics. 2008 Apr 24;9:187. (PMID: 18435834)
PLoS One. 2007 Oct 31;2(10):e1086. (PMID: 17971851)
Mol Ecol. 2012 Aug;21(16):3947-59. (PMID: 22725969)
Genetics. 2012 Sep;192(1):205-24. (PMID: 22714413)
Science. 2019 Jun 21;364(6446):. (PMID: 31221828)
Genetics. 1984 Jan;106(1):153-64. (PMID: 17246189)
Genetics. 1973 Dec;75(4):733-56. (PMID: 4778791)
Proc Biol Sci. 2009 Jun 7;276(1664):2057-64. (PMID: 19324784)
Genet Res. 2005 Aug;86(1):77-87. (PMID: 16181525)
Nat Rev Genet. 2015 Jun;16(6):333-43. (PMID: 25963372)
Evolution. 2014 Oct;68(10):2747-56. (PMID: 24964074)
Proc Biol Sci. 2006 Apr 7;273(1588):797-804. (PMID: 16618672)
Rev Sci Tech. 2002 Apr;21(1):53-65. (PMID: 11974630)
Nat Rev Genet. 2009 Nov;10(11):783-96. (PMID: 19834483)
J Hered. 2013 Mar;104(2):172-81. (PMID: 23341534)
Genetics. 2009 Apr;181(4):1493-505. (PMID: 19189949)
Science. 2016 Oct 28;354(6311):477-481. (PMID: 27789843)
Nat Rev Genet. 2008 Jun;9(6):477-85. (PMID: 18427557)
Proc Biol Sci. 2003 Oct 22;270(1529):2151-7. (PMID: 14561279)
BMC Genet. 2013 Oct 30;14:106. (PMID: 24172017)
Mol Ecol. 2008 Nov;17(22):4845-58. (PMID: 19140976)
PLoS One. 2013;8(2):e56235. (PMID: 23437100)
Mol Ecol. 2000 Dec;9(12):2017-25. (PMID: 11123614)
Am Nat. 1975 Nov. - Dec.;109(970):659-676. (PMID: 29513550)
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10):. (PMID: 33608481)
Proc Biol Sci. 2015 Dec 7;282(1820):20152189. (PMID: 26631564)
Nature. 2003 Mar 6;422(6927):35. (PMID: 12621424)
J Anim Ecol. 2018 Nov;87(6):1500-1511. (PMID: 29938787)
Genet Sel Evol. 2014 May 29;46:34. (PMID: 24885305)
Genetics. 2016 May;203(1):451-62. (PMID: 27010021)
PLoS One. 2018 Feb 7;13(2):e0191481. (PMID: 29415077)
J Wildl Dis. 2011 Jul;47(3):494-500. (PMID: 21719814)
J Evol Biol. 2005 Sep;18(5):1368-73. (PMID: 16135132)
Evolution. 2013 Mar;67(3):908-17. (PMID: 23461340)
BMC Evol Biol. 2014 Nov 01;14:203. (PMID: 25367154)
PLoS One. 2020 Aug 14;15(8):e0236717. (PMID: 32797056)
PLoS One. 2019 Sep 4;14(9):e0221168. (PMID: 31483802)
Sci Rep. 2021 Feb 25;11(1):4540. (PMID: 33633171)
Trends Ecol Evol. 2016 Apr;31(4):315-326. (PMID: 26920473)
Molecular Sequence:
Dryad 10.5061/dryad.s7h44j14c
Entry Date(s):
Date Created: 20211209 Date Completed: 20220110 Latest Revision: 20220110
Update Code:
20240105
PubMed Central ID:
PMC8659316
DOI:
10.1371/journal.pone.0259685
PMID:
34882683
Czasopismo naukowe
A high genetic load can negatively affect population viability and increase susceptibility to diseases and other environmental stressors. Prior microsatellite studies of two African buffalo (Syncerus caffer) populations in South Africa indicated substantial genome-wide genetic load due to high-frequency occurrence of deleterious alleles. The occurrence of these alleles, which negatively affect male body condition and bovine tuberculosis resistance, throughout most of the buffalo's range were evaluated in this study. Using available microsatellite data (2-17 microsatellite loci) for 1676 animals from 34 localities (from 25°S to 5°N), we uncovered continent-wide frequency clines of microsatellite alleles associated with the aforementioned male traits. Frequencies decreased over a south-to-north latitude range (average per-locus Pearson r = -0.22). The frequency clines coincided with a multilocus-heterozygosity cline (adjusted R2 = 0.84), showing up to a 16% decrease in southern Africa compared to East Africa. Furthermore, continent-wide linkage disequilibrium (LD) at five linked locus pairs was detected, characterized by a high fraction of positive interlocus associations (0.66, 95% CI: 0.53, 0.77) between male-deleterious-trait-associated alleles. Our findings suggest continent-wide and genome-wide selection of male-deleterious alleles driven by an earlier observed sex-chromosomal meiotic drive system, resulting in frequency clines, reduced heterozygosity due to hitchhiking effects and extensive LD due to male-deleterious alleles co-occurring in haplotypes. The selection pressures involved must be high to prevent destruction of allele-frequency clines and haplotypes by LD decay. Since most buffalo populations are stable, these results indicate that natural mammal populations, depending on their genetic background, can withstand a high genetic load.
Competing Interests: The authors have declared that no competing interests exist.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies