Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Carbon footprint in Latin American dairy systems.

Tytuł:
Carbon footprint in Latin American dairy systems.
Autorzy:
Velarde-Guillén J; Universidad Nacional Agraria La Molina, Lima, Peru.
Arndt C; International Livestock Research Institute (ILRI), Nairobi, Kenya.
Gómez CA; Universidad Nacional Agraria La Molina, Lima, Peru. .
Źródło:
Tropical animal health and production [Trop Anim Health Prod] 2021 Dec 14; Vol. 54 (1), pp. 15. Date of Electronic Publication: 2021 Dec 14.
Typ publikacji:
Journal Article; Systematic Review
Język:
English
Imprint Name(s):
Publication: 2005- : Heidelberg : Springer
Original Publication: Edinburgh, Livingstone.
MeSH Terms:
Carbon Footprint*
Dairying*
Animals ; Cattle ; Diet ; Female ; Lactation ; Latin America ; Methane/analysis ; Milk/chemistry
References:
Alvarado-Bolovich, V., Medrano, J., Haro, J., Castro-Montoya, J., Dickhoefer, U. and Gómez, C., 2021. Enteric methane emissions from lactating dairy cows grazing cultivated and native pastures in the high Andes of Peru. Livestock Science, 243, 104385. https://doi.org/10.1016/j.livsci.2020.104385. (PMID: 10.1016/j.livsci.2020.104385)
Bartl, K., Gómez, C.A. and Nemecek, T., 2011. Life cycle assessment of milk produced in two smallholder dairy systems in the highlands and the coast of Peru. Journal of Cleaner Production, 19, 1494-1505. https://doi.org/10.1016/j.jclepro.2011.04.010. (PMID: 10.1016/j.jclepro.2011.04.010)
Batalla, I., Knudsen, M.T., Mogensen, L., del Hierro, O., Pinto, M. and Hermansen, J.E., 2015. Carbon footprint of milk from sheep farming systems in northern Spain including soil carbon sequestration in grasslands. Journal of Cleaner Production 104:121–129. https://doi.org/10.1016/j.jclepro.2015.05.043. (PMID: 10.1016/j.jclepro.2015.05.043)
Berman, A., 2011. Invited review: Are adaptations present to support dairy cattle productivity in warm climates? Journal of Dairy Science 94:2147-2158. https://doi.org/10.3168/jds.2010-3962. (PMID: 10.3168/jds.2010-396221524505)
Brummel, R.F. and Nelson, K.C., 2014. Does multifunctionality matter to US farmers? Farmer motivations and conceptions of multifunctionality in dairy systems. Journal of Environmental Management, 146, 451-462. https://doi.org/10.1016/j.jenvman.2014.07.034. (PMID: 10.1016/j.jenvman.2014.07.03425139106)
Bryant, R.H., Miller, M.E., Greenwood, S.L. and Edwards, G.R., 2017. Milk yield and nitrogen excretion of dairy cows grazing binary and multispecies pastures. Grass and Forage Science72 (4), 806–817. https://doi.org/10.1016/j.scitotenv.2021.148163.
Dalgaard, R., Schmidt, J. and Flysjö, A., 2014. Generic model for calculating carbon footprint of milk using four different life cycle assessment modelling approaches. Journal of Cleaner Production73:146–153. https://doi.org/10.1016/j.jclepro.2014.01.025. (PMID: 10.1016/j.jclepro.2014.01.025)
Del Prado, A., Mas, K., Pardo, G. and Gallejones, P., 2013. Modelling the interactions between C and N farm balances and GHG emissions from confinement dairy farms in northern Spain. Science of the Total Environment,465: 156–165. https://doi.org/10.1016/j.scitotenv.2013.03.064. (PMID: 10.1016/j.scitotenv.2013.03.064)
Dentler, J., Kiefer, L., Hummler, T., Bahrs, E. and Elsaesser, M., 2020. The impact of low-input grass-based and high-input confinement-based dairy systems on food production, environmental protection, and resource use. Agroecology and Sustainable Food Systems, 44(8), 1089-1110. https://doi.org/10.1080/21683565.2020.1712572. (PMID: 10.1080/21683565.2020.1712572)
Dutreuil, M., Wattiaux, M., Hardie, C.A. and Cabrera, V.E., 2014. Feeding strategies and manure management for cost-effective mitigation of greenhouse gas emissions from dairy farms in Wisconsin. Journal of dairy science, 97(9), 5904-5917. https://doi.org/10.3168/jds.2014-8082. (PMID: 10.3168/jds.2014-808224996278)
FAO., 2010. Greenhouse Gas Emissions from the Dairy Sector. A Life Cycle Assessment. FAO, Rome, Italy.
Flysjö, A., Cederberg, C., Henriksson, M. and Ledgard, S., 2011. How does co-product handling affect the carbon footprint of milk? Case study of milk production in New Zealand and Sweden. The International Journal of Life Cycle Assessment, 16(5), 420-430. https://doi.org/10.1007/s11367-011-0283-9. (PMID: 10.1007/s11367-011-0283-9)
Gaitán, L., Läderach, P., Graefe, S., Rao, I. and van der Hoek, R., 2016. Climate-Smart Livestock Systems: An Assessment of Carbon Stocks and GHG Emissions in Nicaragua. PLoS ONE 11(12): e0167949. https://doi.org/10.1371/journal.pone.0167949. (PMID: 10.1371/journal.pone.0167949280305995193326)
Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. and Tempio, G., 2013. Tackling Climate Change Through Livestock – A Global Assessment of Emissions and Mitigation Opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome.
Gómez Palencia, E., 2018. Impacto de las prácticas de manejo sobre la huella de carbono de la leche en los sistemas de producción bovina de la provincia de Ubaté. Available at: https://repositorio.unal.edu.co/handle/unal/63834.
González-Quintero, R., Kristensen, T., Sánchez-Pinzón, M.S., Bolívar-Vergara, D.M., Chirinda, N., Arango, J., Pantevez, H., Barahona-Rosales, R. and Knudsen, M.T., 2021 Carbon footprint, non-renewable energy and land use of dual-purpose cattle systems in Colombia using a life cycle assessment approach, Livestock Science, 104330. https://doi.org/10.1016/j.livsci.2020.104330 .
Hartwiger, J., Schären, M., Potthoff, S., Hüther, L., Kersten, S., Von Soosten, D., Beineke, A., Meyer, U., Breves, G. and Dänicke, S., 2018. Effects of a Change from an Indoor-Based Total Mixed Ration to a Rotational Pasture System Combined With a Moderate Concentrate Feed Supply on Rumen Fermentation of Dairy Cows. Animals, 8, 205. https://doi.org/10.3390/ani8110205. (PMID: 10.3390/ani81102056262550)
Hernández-Castellano, L.E., Nally, J.E., Lindahl, J., Wanapat, M., Alhirdary, I.A., Frangueiro, D., Grace, D., Ratto, M., Bambou, J.C. and Almeida, A.M., 2019. Dairy science and health in the tropics: Challenges and opportunities for the next decades. Tropical Animal Health and Production, 51, 1009–1017. https://doi.org/10.1007/s11250-019-01866-6. (PMID: 10.1007/s11250-019-01866-630911961)
Herrero, M., Wirsenius, S., Henderson, B., Rigolot, C., Thornton, P., Havlík, P., de Boer, I. and Gerber, P.J., 2015. Livestock and the environment: What have we learned in the past decade? Annual Review of Environment and Resources 40:177–202. https://doi.org/10.1146/annurevenviron-031113-093503 . (PMID: 10.1146/annurevenviron-031113-093503)
Holly, M.A., Gunn, K.M., Rotz, C.A. and Kleinman, P.J., 2019. Management characteristics of Pennsylvania dairy farms. Applied Animal Science, 35(3), 325-338. https://doi.org/10.15232/aas.2018-01833. (PMID: 10.15232/aas.2018-01833)
IDF (International Dairy Federation)., 2015. Bulletin of the IDF N479/2015: A common carbon footprint approach for the dairy sector—the IDF guide to standard life cycle assessment methodology: https://fil-idf.org/publications/bulletin/a-common-carbon-footprint-approach-for-the-dairy-sector-the-idf-guide-to-standard-life-cycle-assessment-methodology/ . Accessed May 23, 2021.
IHOBE (Public Society of Environmental Management of the Basque Country)., 2009. Life cycle assessment and carbon footprint. Two ways to estimate the environmental impacts of a product. Bilbao: IHOBE.
Jayasundara, S., Worden, D., Weersink, A., Wright, T., VanderZaag, A., Gordon, R. and Wagner-Riddle, C., 2019. Improving farm profitability also reduces the carbon footprint of milk production in intensive dairy production systems. Journal of cleaner production, 229, 1018-1028. https://doi.org/10.1016/j.jclepro.2019.04.013. (PMID: 10.1016/j.jclepro.2019.04.013)
Knaus, W., 2016. Perspectives on pasture versus indoor feeding of dairy cows. Journal of the Science of Food and Agriculture, 96(1), 9-17. https://doi.org/10.1002/jsfa.7273. (PMID: 10.1002/jsfa.727326010136)
Laca, A., Gómez, N., Laca, A. and Díaz, M., 2020. Overview on GHG emissions of raw milk production and a comparison of milk and cheese carbon footprints of two different systems from northern Spain. Environmental Science and Pollution Research, 27(2), 1650-1666. https://doi.org/10.1007/s11356-019-06857-6. (PMID: 10.1007/s11356-019-06857-631755063)
Lizarralde, C., Picasso, V., Rotz, C.A., Cadenazzi, M. and Astigarraga, L., 2014. Practices to reduce milk carbon footprint on grazing dairy farms in southern Uruguay: Case studies. Sustainable Agriculture Research, 3(526–2016–37791). https://doi.org/10.22004/ag.econ.230518.
Lorenz, H., Reinsch, T., Hess, S. and Taube, F., 2019. Is low-input dairy farming more climate friendly? A meta-analysis of the carbon footprints of different production systems. Journal of Cleaner Production, 211, 161-170. https://doi.org/10.1016/j.jclepro.2018.11.113. (PMID: 10.1016/j.jclepro.2018.11.113)
Marín-Santana, M.N., López-González, F., Hernández-Mendo, O. and Arriaga-Jordán, C.M., 2020. Kikuyu pastures associated with tall fescue grazed in autumn in small-scale dairy systems in the highlands of Mexico. Tropical animal health and production, 52, 1919–1926. https://doi.org/10.1007/s11250-020-02216-7. (PMID: 10.1007/s11250-020-02216-731960267)
Mazzetto, A.M., Bishop, G., Styles, D., Arndt, C., Brook, R. and Chadwick, D., 2020. Comparing the environmental efficiency of milk and beef production through life cycle assessment of interconnected cattle systems. Journal of Cleaner Production, 277, 124108. https://doi.org/10.1016/j.jclepro.2020.124108. (PMID: 10.1016/j.jclepro.2020.124108)
Moate, P., Deighton, M., Jacobs, J., Ribaux, B., Morris, G., Hannah, M., Mapleson, D., Islam, M., Wales, W. and Williams, S., 2020. Influence of proportion of wheat in a pasture-based diet on milk yield, methane emissions, methane yield, and ruminal protozoa of dairy cows. Journal of Dairy Science, 103, 2373–2386. https://doi.org/10.3168/jds.2019-17514. (PMID: 10.3168/jds.2019-1751431882219)
Molina Benavides, R.A., 2011. Sostenibilidad de los sistemas ganaderos localizados en el parque nacional natural de las Hermosas y su zona de influencia. Available at: https://repositorio.unal.edu.co/bitstream/handle/unal/7347/7408508.2011.pdf?sequence=1&isAllowed=y.
Opio, C., Gerber, P., Mottet, A., Falcucci, A., Tempio, G., MacLeod, M., Vellinga, T., Henderson, B. and Steinfeld, H., 2013. Greenhouse Gas Emissions From Ruminant Supply Chains—A Global Life Cycle Assessment. Food and Agriculture Organization of the United Nations (FAO), Rome.
Perotto, D., Kroetz, I.A. and Rocha, J.L.D., 2010. Milk production of crossbred Holstein× Zebu cows in the northeastern region of Paraná State. Revista Brasileira de Zootecnia, 39(4), 758-764. https://doi.org/10.1590/S1516-35982010000400009. (PMID: 10.1590/S1516-35982010000400009)
Powell, J.M., Jackson-Smith, D.B., McCrory, D.F., Saam, H. and Mariola, M., 2007. Nutrient management behavior on Wisconsin dairy farms. Agronomy Journal, 99, 211–219. https://doi.org/10.2134/agronj2006.0116. (PMID: 10.2134/agronj2006.0116)
Powell, J.M., Macleod, M., Vellinga, T.V., Opio, C., Falcucci, A., Tempio, G., Steinfeld, H. and Gerber, P., 2013. Feed – milk – manure nitrogen relationships in global dairy production systems. Livestock Science 152:261–72. https://doi.org/10.1016/j.livsci.2013.01.001 . (PMID: 10.1016/j.livsci.2013.01.001)
Rangel, J., Perea, J., De-Pablos-Heredero, C., Espinosa-García, J.A., Mujica, P.T., Feijoo, M., Barba, C. and García, A., 2020. Structural and technological characterization of tropical smallholder farms of dual-purpose cattle in Mexico. Animals, 10, 86. https://doi.org/10.3390/ani10010086. (PMID: 10.3390/ani100100867023156)
Ribeiro-Filho, H.M., Civiero, M. and Kebreab, E., 2020. Potential to reduce greenhouse gas emissions through different dairy cattle systems in subtropical regions. Plos one, 15(6), e0234687. https://doi.org/10.1371/journal.pone.0234687. (PMID: 10.1371/journal.pone.0234687325556547302504)
Rivera, J.E., Arenas, F.A., Rivera, R., Benavides, L.M. and Sánchez, J., 2014. Life cycle assessment in milk production: comparison of two specialized dairy herds. Livestock Research for Rural Development. 26:1-9.
Rivera, J.E., Chará, J. and Barahona, R., 2016. Análisis del ciclo de vida para la producción de leche bovina en un sistema silvopastoril intensivo y un sistema convencional en Colombia. Tropical and subtropical agroecosystems, 19(3), 237-251.
Sainz-Sánchez, P.A., López-González, F., Estrada-Flores, J.G., Martínez-García, C.G. and Arriaga-Jordán, C.M., 2017. Effect of stocking rate and supplementation on performance of dairy cows grazing native grassland in small-scale systems in the highlands of central Mexico. Tropical animal health and production, 49(1), 179-186. https://doi.org/10.1007/s11250-016-1178-3. (PMID: 10.1007/s11250-016-1178-327778142)
Styles, D., Gonzalez‐Mejia, A., Moorby, J., Foskolos, A. and Gibbons, J., 2018. Climate mitigation by dairy intensification depends on intensive use of spared grassland. Global change biology, 24(2), 681-693. https://doi.org/10.1111/gcb.13868. (PMID: 10.1111/gcb.1386828940511)
Tu, Q., Eckelman, M. and Zimmerman, J., 2017. Meta-analysis and harmonization of life cycle assessment studies for algae biofuels. Environmental science and technology, 51(17), 9419-9432. https://doi.org/10.1021/acs.est.7b01049. (PMID: 10.1021/acs.est.7b0104928714306)
Uddin, M.E., Aguirre-Villegas, H.A., Larson, R.A. and Wattiaux, M.A., 2021. Carbon footprint of milk from Holstein and Jersey cows fed low or high forage diet with alfalfa silage or corn silage as the main forage source. Journal of Cleaner Production, 298, 126720. https://doi.org/10.1016/j.jclepro.2021.126720. (PMID: 10.1016/j.jclepro.2021.126720)
Van Hyfte, H., 2014. Carbon footprint of milk produced in extensive and intensive dairy production systems in Peru and potential for mitigation through diet optimization. Available at: https://lib.ugent.be/en/catalog/rug01:002166598.
Wilkes, A., Wassie, S., Fraval, S. and van Dijk, S., 2020. Variation in the carbon footprint of milk production on smallholder dairy farms in central Kenya. Journal of Cleaner Production, 265, 121780. https://doi.org/10.1016/j.jclepro.2020.121780. (PMID: 10.1016/j.jclepro.2020.121780)
Yan, M.J., Humphreys, J. and Holden, N.M., 2013. Life cycle assessment of milk production from commercial dairy farms: the influence of management tactics. Journal of Dairy Science 96:4112–4124. https://doi.org/10.3168/jds.2012-6139. (PMID: 10.3168/jds.2012-613923660142)
Zhu, B., Kros, J., Lesschen, J.P., Staritsky, I.G. and de Vries, W., 2016. Assessment of uncertainties in greenhouse gas emission profiles of livestock sectors in Africa, Latin America and Europe. Regional Environmental Change, 16(6), 1571-1582. https://doi.org/10.1007/s10113-015-0896-9. (PMID: 10.1007/s10113-015-0896-9)
Contributed Indexing:
Keywords: Carbon footprint; Dairy cattle; Dual-purpose cattle; Latin America; Milk yield; Temperate; Tropical
Substance Nomenclature:
OP0UW79H66 (Methane)
Entry Date(s):
Date Created: 20211214 Date Completed: 20211216 Latest Revision: 20211216
Update Code:
20240105
DOI:
10.1007/s11250-021-03021-6
PMID:
34905115
Czasopismo naukowe
The study reviewed carbon footprint (CF) analyses for milk production in Latin America from cradle to farm gate. The objective was to estimate (1) the effect of feeding management (zero-grazing, semi-confinement, and pasture), (2) cattle system (specialized dairy vs. dual-purpose), and (3) region (tropical vs. temperate) on milk production (kg/cow/day) and CF (kg CO 2 eq/kg fat and protein corrected milk (FPCM)). A systematic literature review was conducted, and for the final analysis, a total of 32 individual CF (from 11 studies) were used. Studies included in the final analysis allowed to calculate CF per kg FPCM, included upstream emissions calculations, and used the IPCC's tier 2 approach for enteric methane emissions. The range of the CF observed in the region was from 1.54 to 3.57 kg CO2eq/kg FPCM. Feeding management had a significant effect on milk production, but not on CF. Zero-grazing compared with pasture systems had a 140% greater milk production (20.1 vs. 8.4 kg milk/cow/day), but numerically greater CF for pasture systems (2.6 vs. 1.7 kg CO 2 eq/kg FPCM). Compared with specialized dairy cattle, dual-purpose cattle produced less milk (P < 0.001) and higher CF (P < 0.05). Compared with temperate regions, tropical region systems produced less milk and higher CF. In conclusion, in Latin America, the cattle system and region have a significant impact on CF, whereas the feeding management (zero-grazing, semi-confinement, and pasture) does not impact the CF of milk produced.
(© 2021. The Author(s), under exclusive licence to Springer Nature B.V.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies