Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Chemokines modulate glycan binding and the immunoregulatory activity of galectins.

Tytuł:
Chemokines modulate glycan binding and the immunoregulatory activity of galectins.
Autorzy:
Sanjurjo L; Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
Schulkens IA; Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
Touarin P; Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université, UMR7255, Marseille, France.
Heusschen R; Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
Aanhane E; Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
Castricum KCM; Amsterdam UMC location VUmc, Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
De Gruijl TD; Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
Nilsson UJ; Lund University, Department of Chemistry, Centre for Analysis and Synthesis, Lund, Sweden.
Leffler H; Lund University, Department of Laboratory Medicine, Section MIG, Lund, Sweden.
Griffioen AW; Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
Elantak L; Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université, UMR7255, Marseille, France.
Koenen RR; Maastricht University, Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands.
Thijssen VLJL; Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands. .; Amsterdam UMC location VUmc, Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands. .
Źródło:
Communications biology [Commun Biol] 2021 Dec 20; Vol. 4 (1), pp. 1415. Date of Electronic Publication: 2021 Dec 20.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London, United Kingdom : Nature Publishing Group UK, [2018]-
MeSH Terms:
Immunomodulation*
Chemokine CXCL5/*metabolism
Galectin 1/*metabolism
Galectins/*metabolism
Platelet Factor 4/*metabolism
Polysaccharides/*metabolism
Humans ; Jurkat Cells
References:
Cummings, R. D. The repertoire of glycan determinants in the human glycome. Mol. Biosyst. 5, 1087–1104 (2009). (PMID: 1975629810.1039/b907931a)
Thijssen, V. L., Heusschen, R., Caers, J. & Griffioen, A. W. Galectin expression in cancer diagnosis and prognosis: a systematic review. Biochim. Biophys. Acta 1855, 235–247 (2015).
Eckardt, V. et al. Chemokines and galectins form heterodimers to modulate inflammation. EMBO Rep 21, e47852 (2020).
Thijssen, V. L. et al. Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc. Natl Acad. Sci. USA 103, 15975–15980 (2006). (PMID: 17043243163511210.1073/pnas.0603883103)
Salomonsson, E., Thijssen, V. L., Griffioen, A. W., Nilsson, U. J. & Leffler, H. The anti-angiogenic peptide anginex greatly enhances galectin-1 binding affinity for glycoproteins. J. Biol. Chem. 286, 13801–13804 (2011). (PMID: 21372130307758010.1074/jbc.C111.229096)
Elantak, L. et al. Structural basis for galectin-1-dependent pre-B cell receptor (pre-BCR) activation. J. Biol. Chem. 287, 44703–44713 (2012). (PMID: 23124203353178510.1074/jbc.M112.395152)
Bonzi, J. et al. Pre-B cell receptor binding to galectin-1 modifies galectin-1/carbohydrate affinity to modulate specific galectin-1/glycan lattice interactions. Nat. Commun. 6, 6194 (2015). (PMID: 2570819110.1038/ncomms7194)
Dickhout, A. et al. Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. PLoS One 16, e0244736 (2021). (PMID: 33411760779039410.1371/journal.pone.0244736)
Salomonsson, E. et al. Monovalent interactions of galectin-1. Biochemistry 49, 9518–9532 (2010). (PMID: 2087380310.1021/bi1009584)
Toscano, M. A. et al. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat. Immunol. 8, 825–834 (2007). (PMID: 1758951010.1038/ni1482)
Bi, S., Earl, L. A., Jacobs, L. & Baum, L. G. Structural features of galectin-9 and galectin-1 that determine distinct T cell death pathways. J. Biol. Chem. 283, 12248–12258 (2008). (PMID: 18258591243100210.1074/jbc.M800523200)
Perillo, N. L., Pace, K. E., Seilhamer, J. J. & Baum, L. G. Apoptosis of T cells mediated by galectin-1. Nature 378, 736–739 (1995). (PMID: 750102310.1038/378736a0)
Nagarsheth, N., Wicha, M. S. & Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 17, 559–572 (2017). (PMID: 28555670573183310.1038/nri.2017.49)
Rabinovich, G. A. & Croci, D. O. Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer. Immunity 36, 322–335 (2012). (PMID: 2244463010.1016/j.immuni.2012.03.004)
Zlotnik, A. & Yoshie, O. The chemokine superfamily revisited. Immunity 36, 705–716 (2012). (PMID: 22633458339642410.1016/j.immuni.2012.05.008)
Gordon-Alonso, M., Hirsch, T., Wildmann, C. & van der Bruggen, P. Galectin-3 captures interferon-gamma in the tumor matrix reducing chemokine gradient production and T-cell tumor infiltration. Nat. Commun. 8, 793 (2017). (PMID: 28986561563061510.1038/s41467-017-00925-6)
López-Lucendo, M. F. et al. Growth-regulatory human galectin-1: crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding. J. Mol. Biol. 343, 957–970 (2004). (PMID: 1547681310.1016/j.jmb.2004.08.078)
Nesmelova, I. V. et al. Lactose binding to galectin-1 modulates structural dynamics, increases conformational entropy, and occurs with apparent negative cooperativity. J. Mol. Biol. 397, 1209–1230 (2010). (PMID: 2018489810.1016/j.jmb.2010.02.033)
Chien, C. H., Ho, M. R., Lin, C. H. & Hsu, S. D. Lactose binding induces opposing dynamics changes in human galectins revealed by NMR-based hydrogen-deuterium exchange. Molecules 22, E1357 (2017). (PMID: 2881300410.3390/molecules22081357)
Romero, J. M., Trujillo, M., Estrin, D. A., Rabinovich, G. A. & Di Lella, S. Impact of human galectin-1 binding to saccharide ligands on dimer dissociation kinetics and structure. Glycobiology 26, 1317–1327 (2016). (PMID: 27222530)
Dings, R. P. M. et al. Antitumor agent calixarene 0118 targets human galectin-1 as an allosteric inhibitor of carbohydrate binding. J. Med Chem. 55, 5121–5129 (2012). (PMID: 22575017424209010.1021/jm300014q)
Dings, R. P. M. et al. Structure-based optimization of angiostatic agent 6DBF7, an allosteric antagonist of Galectin-1. J. Pharm. Exp. Ther. 344, 589–599 (2013). (PMID: 10.1124/jpet.112.199646)
Ermakova, E. et al. Lactose binding to human galectin-7 (p53-induced gene 1) induces long-range effects through the protein resulting in increased dimer stability and evidence for positive cooperativity. Glycobiology 23, 508–523 (2013). (PMID: 23376190360835410.1093/glycob/cwt005)
Miller, M. C. et al. Targeting the CRD F-face of Human Galectin-3 and allosterically modulating glycan binding by angiostatic PTX008 and a structurally optimized derivative. ChemMedChem 16, 713–723 (2021). (PMID: 3315695310.1002/cmdc.202000742)
Stillman, B. N. et al. Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J. Immunol. 176, 778–789 (2006). (PMID: 1639396110.4049/jimmunol.176.2.778)
Wada, J., Ota, K., Kumar, A., Wallner, E. I. & Kanwar, Y. S. Developmental regulation, expression, and apoptotic potential of galectin-9, a beta-galactoside binding lectin. J. Clin. Invest. 99, 2452–2461 (1997). (PMID: 915328950808610.1172/JCI119429)
Pace, K. E., Hahn, H. P., Pang, M., Nguyen, J. T. & Baum, L. G. CD7 delivers a pro-apoptotic signal during galectin-1-induced T cell death. J. Immunol. 165, 2331–2334 (2000). (PMID: 1094625410.4049/jimmunol.165.5.2331)
Pace, K. E., Lee, C., Stewart, P. L. & Baum, L. G. Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J. Immunol. 163, 3801–3811 (1999). (PMID: 1049097810.4049/jimmunol.163.7.3801)
Cedeno-Laurent, F., Opperman, M., Barthel, S. R., Kuchroo, V. K. & Dimitroff, C. J. Galectin-1 triggers an immunoregulatory signature in Th cells functionally defined by IL-10 expression. J. Immunol. 188, 3127–3137 (2012). (PMID: 2234566510.4049/jimmunol.1103433)
de la Fuente, H. et al. The leukocyte activation receptor CD69 controls T cell differentiation through its interaction with galectin-1. Mol. Cell Biol. 34, 2479–2487 (2014). (PMID: 24752896405430910.1128/MCB.00348-14)
Affandi, A. J. et al. CXCL4 is a novel inducer of human Th17 cells and correlates with IL-17 and IL-22 in psoriatic arthritis. Eur. J. Immunol. 48, 522–531 (2018). (PMID: 29193036588817810.1002/eji.201747195)
Croci, D. O. et al. Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in Anti-VEGF refractory tumors. Cell 156, 744–758 (2014). (PMID: 2452937710.1016/j.cell.2014.01.043)
Maione, T. E. et al. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 247, 77–79 (1990). (PMID: 168847010.1126/science.1688470)
Sharpe, R. J., Byers, H. R., Scott, C. F., Bauer, S. I. & Maione, T. E. Growth inhibition of murine melanoma and human colon carcinoma by recombinant human platelet factor 4. J. Natl Cancer Inst. 82, 848–853 (1990). (PMID: 169209410.1093/jnci/82.10.848)
Pacienza, N. et al. The immunoregulatory glycan-binding protein galectin-1 triggers human platelet activation. Faseb J. 22, 1113–1123 (2008). (PMID: 1798417410.1096/fj.07-9524com)
Eslin, D. E. et al. Transgenic mice studies demonstrate a role for platelet factor 4 in thrombosis: dissociation between anticoagulant and antithrombotic effect of heparin. Blood 104, 3173–3180 (2004). (PMID: 1476452410.1182/blood-2003-11-3994)
Hirani, N. et al. Target-inhibition of Galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. Eur. Respir. J. 57, 2002559 (2020).
Berraondo, P. et al. Cytokines in clinical cancer immunotherapy. Br. J. Cancer 120, 6–15 (2019). (PMID: 3041382710.1038/s41416-018-0328-y)
Mahoney, K. M., Rennert, P. D. & Freeman, G. J. Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 14, 561–584 (2015). (PMID: 2622875910.1038/nrd4591)
Munn, D. H. & Bronte, V. Immune suppressive mechanisms in the tumor microenvironment. Curr. Opin. Immunol. 39, 1–6 (2016). (PMID: 2660994310.1016/j.coi.2015.10.009)
Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017). (PMID: 28187290539169210.1016/j.cell.2017.01.017)
Crome, S. Q. et al. A distinct innate lymphoid cell population regulates tumor-associated T cells. Nat. Med. 23, 368–375 (2017). (PMID: 28165478549799610.1038/nm.4278)
De Henau, O. et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature 539, 443–447 (2016). (PMID: 27828943563433110.1038/nature20554)
Deng, S. et al. Non-platelet-derived CXCL4 differentially regulates cytotoxic and regulatory T cells through CXCR3 to suppress the immune response to colon cancer. Cancer Lett. 443, 1–12 (2019). (PMID: 3048156310.1016/j.canlet.2018.11.017)
Gao, J. et al. Activation of p38-MAPK by CXCL4/CXCR3 axis contributes to p53-dependent intestinal apoptosis initiated by 5-fluorouracil. Cancer Biol. Ther. 15, 982–991 (2014). (PMID: 24800927411908310.4161/cbt.29114)
Liang, P. et al. Platelet factor 4 induces cell apoptosis by inhibition of STAT3 via up-regulation of SOCS3 expression in multiple myeloma. Haematologica 98, 288–295 (2013). (PMID: 22929979356143810.3324/haematol.2012.065607)
Kasper, B. et al. CXCL4-induced monocyte survival, cytokine expression, and oxygen radical formation is regulated by sphingosine kinase 1. Eur. J. Immunol. 40, 1162–1173 (2010). (PMID: 2010448810.1002/eji.200939703)
Kasper, B., Brandt, E., Brandau, S. & Petersen, F. Platelet factor 4 (CXC chemokine ligand 4) differentially regulates respiratory burst, survival, and cytokine expression of human monocytes by using distinct signaling pathways. J. Immunol. 179, 2584–2591 (2007). (PMID: 1767552110.4049/jimmunol.179.4.2584)
Miller, M. C. et al. Adhesion/growth-regulatory galectins tested in combination: evidence for formation of hybrids as heterodimers. Biochem J. 475, 1003–1018 (2018). (PMID: 2932124210.1042/BCJ20170658)
von Hundelshausen, P. et al. Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood 105, 924–930 (2005). (PMID: 10.1182/blood-2004-06-2475)
Koenen, R. R. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat. Med. 15, 97–103 (2009). (PMID: 1912265710.1038/nm.1898)
Hirabayashi, J. & Kasai, K. Effect of amino acid substitution by sited-directed mutagenesis on the carbohydrate recognition and stability of human 14-kDa beta-galactoside-binding lectin. J. Biol. Chem. 266, 23648–23653 (1991). (PMID: 172105210.1016/S0021-9258(18)54333-7)
Carlsson, S. et al. Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology 17, 663–676 (2007). (PMID: 1733928110.1093/glycob/cwm026)
Sörme, P., Kahl-Knutsson, B., Huflejt, M., Nilsson, U. J. & Leffler, H. Fluorescence polarization as an analytical tool to evaluate galectin-ligand interactions. Anal. Biochem 334, 36–47 (2004). (PMID: 1546495110.1016/j.ab.2004.06.042)
Nishi, N. et al. Functional and structural bases of a cysteine-less mutant as a long-lasting substitute for galectin-1. Glycobiology 18, 1065–1073 (2008). (PMID: 1879664510.1093/glycob/cwn089)
Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005). (PMID: 1581597410.1002/prot.20449)
van Zundert, G. C. P. et al. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428, 720–725 (2016). (PMID: 2641058610.1016/j.jmb.2015.09.014)
Griffioen, A. W. et al. Anginex, a designed peptide that inhibits angiogenesis. Biochem J. 354, 233–242 (2001). (PMID: 11171099122164810.1042/bj3540233)
Substance Nomenclature:
0 (CXCL5 protein, human)
0 (Chemokine CXCL5)
0 (Galectin 1)
0 (Galectins)
0 (LGALS9 protein, human)
0 (PF4 protein, human)
0 (Polysaccharides)
37270-94-3 (Platelet Factor 4)
Entry Date(s):
Date Created: 20211221 Date Completed: 20220110 Latest Revision: 20230210
Update Code:
20240104
PubMed Central ID:
PMC8688422
DOI:
10.1038/s42003-021-02922-4
PMID:
34931005
Czasopismo naukowe
Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8 + T cells, while no effect is observed in CD4 + T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4 + T cells and not of CD8 + T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins.
(© 2021. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies