Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Population Variability Generated during Rescue Process and Passaging of Recombinant Mumps Viruses.

Tytuł:
Population Variability Generated during Rescue Process and Passaging of Recombinant Mumps Viruses.
Autorzy:
Slović A; Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia.
Košutić-Gulija T; Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia.
Forčić D; Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia.
Šantak M; Ruđer Bošković Institute, 10000 Zagreb, Croatia.
Jagušić M; Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia.
Jurković M; Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia.
Pali D; Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia.
Ivančić-Jelečki J; Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia.
Źródło:
Viruses [Viruses] 2021 Dec 20; Vol. 13 (12). Date of Electronic Publication: 2021 Dec 20.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Basel, Switzerland : MDPI
MeSH Terms:
Mumps virus/*genetics
Animals ; Chlorocebus aethiops ; Genome, Viral ; Mumps virus/physiology ; Mutation ; Plasmids ; Recombination, Genetic ; Vero Cells
References:
J Virol. 2003 Jan;77(1):270-9. (PMID: 12477832)
J Virol. 2003 Nov;77(21):11546-54. (PMID: 14557640)
J Neurovirol. 2002 Aug;8(4):335-44. (PMID: 12161818)
Virology. 2016 Jun;493:173-88. (PMID: 27058764)
World J Pediatr. 2019 Oct;15(5):511-515. (PMID: 31377975)
J Gen Virol. 1990 May;71 ( Pt 5):1153-62. (PMID: 2161049)
J Pathol. 2015 Jan;235(2):242-52. (PMID: 25229387)
J Virol. 2011 Jul;85(14):7059-69. (PMID: 21543475)
Virology. 2011 Aug 15;417(1):126-36. (PMID: 21676427)
Vaccine. 2010 Feb 17;28(7):1887-92. (PMID: 19961964)
Vaccine. 2013 Jun 10;31(26):2822-7. (PMID: 23602668)
Virus Genes. 2007 Aug;35(1):17-27. (PMID: 17039408)
Nature. 2006 Jan 19;439(7074):344-8. (PMID: 16327776)
Mol Ther Oncolytics. 2016 Aug 10;3:16019. (PMID: 27556105)
J Gen Virol. 1979 Apr;43(1):247-52. (PMID: 113494)
J Gen Virol. 2016 Nov;97(11):2837-2848. (PMID: 27590163)
Microbes Infect. 2018 Oct - Nov;20(9-10):493-500. (PMID: 29410084)
Viruses. 2019 Nov 01;11(11):. (PMID: 31683999)
Nature. 2017 Oct 5;550(7674):124-127. (PMID: 28953888)
Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4931-4941. (PMID: 32075920)
J Virol. 1999 Jan;73(1):251-9. (PMID: 9847328)
Expert Opin Biol Ther. 2020 Oct;20(10):1187-1201. (PMID: 32602788)
Sci Rep. 2015 Jan 27;5:8056. (PMID: 25623996)
Curr Opin Virol. 2020 Apr;41:85-97. (PMID: 32861945)
J Gen Virol. 2009 Jul;90(Pt 7):1741-1747. (PMID: 19282431)
J Virol. 1996 Aug;70(8):5075-82. (PMID: 8764015)
J Mol Biol. 1991 Mar 20;218(2):397-412. (PMID: 2010917)
World J Pediatr. 2019 Oct;15(5):499-505. (PMID: 31456156)
Int J Environ Res Public Health. 2020 Mar 05;17(5):. (PMID: 32150969)
Front Immunol. 2020 Sep 18;11:2089. (PMID: 33072071)
PLoS One. 2019 May 17;14(5):e0216944. (PMID: 31100083)
J Gen Virol. 1988 Nov;69 ( Pt 11):2893-900. (PMID: 3183630)
Virology. 2002 May 25;297(1):136-52. (PMID: 12083844)
Curr Top Microbiol Immunol. 2009;329:129-62. (PMID: 19198565)
Virol J. 2008 Jul 10;5:79. (PMID: 18616793)
J Virol. 2018 Feb 12;92(5):. (PMID: 29237838)
PLoS Pathog. 2010 Jul 22;6(7):e1001005. (PMID: 20661479)
PLoS One. 2019 Jul 5;14(7):e0219168. (PMID: 31276568)
J Virol. 1998 Feb;72(2):891-9. (PMID: 9444980)
J Mol Evol. 2008 Feb;66(2):98-106. (PMID: 18217182)
mSphere. 2017 Mar 29;2(2):. (PMID: 28405630)
PLoS One. 2014 Apr 18;9(4):e95470. (PMID: 24748123)
J Virol Methods. 2005 Jun;126(1-2):149-56. (PMID: 15847931)
PLoS Pathog. 2020 Oct 9;16(10):e1008877. (PMID: 33035269)
Nat Methods. 2012 Mar 04;9(4):357-9. (PMID: 22388286)
J Virol. 2009 Oct;83(19):9813-23. (PMID: 19625392)
Sci Adv. 2017 Feb 03;3(2):e1602350. (PMID: 28168220)
Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303. (PMID: 29788355)
Science. 2006 Jan 13;311(5758):236-8. (PMID: 16410525)
Genome Biol. 2013 May 29;14(5):R51. (PMID: 23718773)
Sci Rep. 2020 Apr 16;10(1):6563. (PMID: 32300201)
Virus Res. 1989 Jan;12(1):61-75. (PMID: 2718625)
Virus Res. 2005 Apr;109(1):95-105. (PMID: 15826917)
J Virol. 1990 Sep;64(9):4137-45. (PMID: 2166809)
Virol Sin. 2021 Jun;36(3):521-536. (PMID: 33284397)
Bioinformatics. 2009 Aug 15;25(16):2078-9. (PMID: 19505943)
J Virol. 1993 Aug;67(8):4822-30. (PMID: 8392616)
PLoS One. 2012;7(3):e32807. (PMID: 22470426)
BMC Genomics. 2013 Oct 03;14:674. (PMID: 24088188)
J Gen Virol. 2003 Nov;84(Pt 11):3115-3120. (PMID: 14573817)
J Neurovirol. 2007 Dec;13(6):513-21. (PMID: 18097883)
Contributed Indexing:
Keywords: mumps virus; virus rescue; virus variability
Entry Date(s):
Date Created: 20211228 Date Completed: 20220214 Latest Revision: 20220214
Update Code:
20240104
PubMed Central ID:
PMC8707793
DOI:
10.3390/v13122550
PMID:
34960819
Czasopismo naukowe
Recombinant mumps viruses (MuVs) based on established vaccine strains represent attractive vector candidates as they have known track records for high efficacy and the viral genome does not integrate in the host cells. We developed a rescue system based on the consensus sequence of the L-Zagreb vaccine and generated seven different recombinant MuVs by (a) insertion of one or two additional transcription units (ATUs), (b) lengthening of a noncoding region to the extent that the longest noncoding region in MuV genome is created, or (c) replacement of original L-Zagreb sequences with sequences rich in CG and AT dinucleotides. All viruses were successfully rescued and faithfully matched sequences of input plasmids. In primary rescued stocks, low percentages of heterogeneous positions were found (maximum 0.12%) and substitutions were predominantly obtained in minor variants, with maximally four substitutions seen in consensus. ATUs did not accumulate more mutations than the natural MuV genes. Six substitutions characteristic for recombinant viruses generated in our system were defined, as they repetitively occurred during rescue processes. In subsequent passaging of primary rescue stocks in Vero cells, different inconsistencies within quasispecies structures were observed. In order to assure that unwanted mutations did not emerge and accumulate, sub-consensus variability should be closely monitored. As we show for Pro408Leu mutation in L gene and a stop codon in one of ATUs, positively selected variants can rise to frequencies over 85% in only few passages.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies