Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Autonomic Disbalance During Systemic Inflammation is Associated with Oxidative Stress Changes in Sepsis Survivor Rats.

Tytuł:
Autonomic Disbalance During Systemic Inflammation is Associated with Oxidative Stress Changes in Sepsis Survivor Rats.
Autorzy:
Amorim MR; Dental School of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, São Paulo, 14040-904, Ribeirão Preto, Brazil. .; Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. .
de Jesus AA; Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
Santos-Junior NN; Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
Rocha MJA; Dental School of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, São Paulo, 14040-904, Ribeirão Preto, Brazil.
Nogueira JE; School of Physical Education and Sports of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
Batalhão ME; Nursing School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14040-902, Brazil.
Cárnio EC; Nursing School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14040-902, Brazil.
Branco LGS; Dental School of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, São Paulo, 14040-904, Ribeirão Preto, Brazil. .
Źródło:
Inflammation [Inflammation] 2022 Jun; Vol. 45 (3), pp. 1239-1253. Date of Electronic Publication: 2022 Jan 04.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 1999- : New York, NY : Kluwer Academic/Plenum Publishers
Original Publication: New York, Plenum Press.
MeSH Terms:
Lipopolysaccharides*/pharmacology
Sepsis*
Animals ; Cecum/metabolism ; Disease Models, Animal ; Inflammation/etiology ; Male ; Oxidative Stress ; Rats ; Rats, Wistar ; Superoxide Dismutase/metabolism ; Survivors ; Thiobarbituric Acid Reactive Substances
References:
Cohen, J. 2002. The immunopathogenesis of sepsis. Nature 420: 885–891. https://doi.org/10.1038/nature01326 . (PMID: 10.1038/nature0132612490963)
Fernandez, R., G. Nardocci, C. Navarro, E.P. Reyes, C. Acuña-Castillo, and P.P. Cortes. 2014. Neural reflex regulation of systemic inflammation: Potential new targets for sepsis therapy. Frontiers in physiology 5: 489. https://doi.org/10.3389/fphys.2014.00489 . (PMID: 10.3389/fphys.2014.00489255660884266021)
Fleischmann, C., A. Scherag, N.K.J. Adhikari, C.S. Hartog, T. Tsaganos, P. Schlattmann, D.C. Angus, K. Reinhart, and International Forum of Acute Care Trialists. 2016. Assessment of global incidence and mortality of hospital-treated sepsis Current Estimates and Limitations. American journal of respiratory and critical care medicine 193: 259–272. https://doi.org/10.1164/rccm.201504-0781OC . (PMID: 10.1164/rccm.201504-0781OC26414292)
Levy, M.M., M.P. Fink, J.C. Marshall, E. Abraham, D. Angus, D. Cook, J. Cohen, S.M. Opal, J.-L. Vincent, G. Ramsay, and SCCM/ESICM/ACCP/ATS/SIS. 2003. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Critical Care Medicine 31: 1250–1256. https://doi.org/10.1097/01.CCM.0000050454.01978.3B . (PMID: 10.1097/01.CCM.0000050454.01978.3B12682500)
Nathan, C. 2002. Points of control in inflammation. Nature 420: 846–852. https://doi.org/10.1038/nature01320 . (PMID: 10.1038/nature0132012490957)
Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.-D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.-L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315: 801–810. https://doi.org/10.1001/jama.2016.0287 . (PMID: 10.1001/jama.2016.0287269033384968574)
Spiller, F., R. Oliveira Formiga, J. Fernandes da Silva Coimbra, J.C. Alves-Filho, T.M. Cunha, and F.Q. Cunha. 2019. Targeting nitric oxide as a key modulator of sepsis arthritis and pain. Nitric Oxide 89: 32–40. https://doi.org/10.1016/j.niox.2019.04.011 . (PMID: 10.1016/j.niox.2019.04.01131051258)
Ou, S.-M., H. Chu, P.-W. Chao, Y.-J. Lee, S.-C. Kuo, T.-J. Chen, C.-M. Tseng, C.-J. Shih, and Y.-T. Chen. 2016. Long-term mortality and major adverse cardiovascular events in sepsis survivors A nationwide population-based study. American journal of respiratory and critical care medicine 194: 209–217. https://doi.org/10.1164/rccm.201510-2023OC . (PMID: 10.1164/rccm.201510-2023OC26808711)
Wang, T., A. Derhovanessian, S. De Cruz, J.A. Belperio, J.C. Deng, and G.S. Hoo. 2014. Subsequent infections in survivors of sepsis: Epidemiology and outcomes. Journal of intensive care medicine 29: 87–95. https://doi.org/10.1177/0885066612467162 . (PMID: 10.1177/088506661246716223753224)
Winters, B.D., M. Eberlein, J. Leung, D.M. Needham, P.J. Pronovost, and J.E. Sevransky. 2010. Long-term mortality and quality of life in sepsis: A systematic review. Critical care medicine 38: 1276–1283. https://doi.org/10.1097/CCM.0b013e3181d8cc1d . (PMID: 10.1097/CCM.0b013e3181d8cc1d20308885)
Yende, S., W. Linde-Zwirble, F. Mayr, L.A. Weissfeld, S. Reis, and D.C. Angus. 2014. Risk of cardiovascular events in survivors of severe sepsis. American journal of respiratory and critical care medicine 189: 1065–1074. https://doi.org/10.1164/rccm.201307-1321OC . (PMID: 10.1164/rccm.201307-1321OC244565354098105)
Mazeraud, A., Q. Pascal, F. Verdonk, N. Heming, F. Chrétien, and T. Sharshar. 2016. Neuroanatomy and physiology of brain dysfunction in sepsis. Clinics in chest medicine 37: 333–345. https://doi.org/10.1016/j.ccm.2016.01.013 . (PMID: 10.1016/j.ccm.2016.01.01327229649)
Hotchkiss, R.S., L.L. Moldawer, S.M. Opal, K. Reinhart, I.R. Turnbull, and J.-L. Vincent. 2016. Sepsis and septic shock. Nature reviews Disease primers 2: 16045. https://doi.org/10.1038/nrdp.2016.45 . (PMID: 10.1038/nrdp.2016.45281173975538252)
Beloncle, F., N. Lerolle, P. Radermacher, and P. Asfar. 2013. Target blood pressure in sepsis: Between a rock and a hard place. Critical Care 17: 126. https://doi.org/10.1186/cc12543 . (PMID: 10.1186/cc12543235349633672534)
Pancoto, J.A.T., P.B.F. Corrêa, G.R. Oliveira-Pelegrin, and M.J.A. Rocha. 2008. Autonomic dysfunction in experimental sepsis induced by cecal ligation and puncture. Autonomic Neuroscience 138: 57–63. https://doi.org/10.1016/j.autneu.2007.10.006 . (PMID: 10.1016/j.autneu.2007.10.00618060845)
Töllner, B., J. Roth, B. Störr, D. Martin, K. Voigt, and E. Zeisberger. 2000. The role of tumor necrosis factor (TNF) in the febrile and metabolic responses of rats to intraperitoneal injection of a high dose of lipopolysaccharide. Pflügers Archiv 440: 925–932. https://doi.org/10.1007/s004240000386 . (PMID: 10.1007/s00424000038611041560)
Amorim, M.R., J.L. de Deus, R.A. Cazuza, C.M.D. Mota, L.E.V. da Silva, G.S. Borges, M.E. Batalhão, E.C. Cárnio, and L.G.S. Branco. 2019. Neuroinflammation in the NTS is associated with changes in cardiovascular reflexes during systemic inflammation. Journal of neuroinflammation 16: 125. https://doi.org/10.1186/s12974-019-1512-6 . (PMID: 10.1186/s12974-019-1512-6312211646587275)
Giusti-Paiva, A., M.R. Martinez, L.B. Bispo-da-Silva, M.C.O. Salgado, L.L.K. Elias, and J. Antunes-Rodrigues. 2007. Vasopressin mediates the pressor effect of hypertonic saline solution in endotoxic shock. Shock 27: 416–421. https://doi.org/10.1097/01.shk.0000239759.05583.fd . (PMID: 10.1097/01.shk.0000239759.05583.fd17414425)
Saia, R.S., G. Bertozi, F.L. Mestriner, J. Antunes-Rodrigues, F. Queiróz Cunha, and E.C. Cárnio. 2013. Cardiovascular and inflammatory response to cholecystokinin during endotoxemic shock. Shock 39: 104–113. https://doi.org/10.1097/SHK.0b013e3182793e2e . (PMID: 10.1097/SHK.0b013e3182793e2e23247127)
Chen, K., S. Geng, R. Yuan, N. Diao, Z. Upchurch, and L. Li. 2015. Super-low dose endotoxin pre-conditioning exacerbates sepsis mortality. eBioMedicine 2: 324–333. https://doi.org/10.1016/j.ebiom.2015.03.001 . (PMID: 10.1016/j.ebiom.2015.03.001260297364445878)
Otto, G.P., M. Sossdorf, R.A. Claus, J. Rödel, K. Menge, K. Reinhart, M. Bauer, and N.C. Riedemann. 2011. The late phase of sepsis is characterized by an increased microbiological burden and death rate. Critical care 15: R183. https://doi.org/10.1186/cc10332 . (PMID: 10.1186/cc10332217980633387626)
Pena, O.M., J. Pistolic, D. Raj, C.D. Fjell, and R.E.W. Hancock. 2011. Endotoxin tolerance represents a distinctive state of alternative polarization (M2) in human mononuclear cells. The Journal of Immunology 186: 7243–7254. https://doi.org/10.4049/jimmunol.1001952 . (PMID: 10.4049/jimmunol.100195221576504)
Mantzarlis, K., V. Tsolaki, and E. Zakynthinos. 2017. Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies. Oxidative medicine and cellular longevity 2017: 5985209. https://doi.org/10.1155/2017/5985209 . (PMID: 10.1155/2017/5985209289047395585571)
Steven, S., K. Frenis, M. Oelze, S. Kalinovic, M. Kuntic, M.T. Bayo Jimenez, K. Vujacic-Mirski, J. Helmstädter, S. Kröller-Schön, T. Münzel, and A. Daiber. 2019. Vascular inflammation and oxidative stress: Major triggers for cardiovascular disease. Oxidative medicine and cellular longevity 2019: 7092151. https://doi.org/10.1155/2019/7092151 . (PMID: 10.1155/2019/7092151313415336612399)
Amorim, M.R., D.A. Moreira, B.M. Santos, G.D. Ferrari, J.E. Nogueira, J.L. de Deus, L.C. Alberici, and L.G.S. Branco. 2020. Increased lipopolysaccharide-induced hypothermia in neurogenic hypertension is caused by reduced hypothalamic PGE2 production and increased heat loss. The Journal of Physiology 598: 4663–4680. https://doi.org/10.1113/JP280321 . (PMID: 10.1113/JP28032132749717)
Jesus, A.A., P. Passaglia, B.M. Santos, I. Rodrigues-Santos, R.A. Flores, M.E. Batalhão, A.M. Stabile, and E.C. Cárnio. 2020. Chronic molecular hydrogen inhalation mitigates short and long-term memory loss in polymicrobial sepsis. Brain research 1739: 146857. https://doi.org/10.1016/j.brainres.2020.146857 . (PMID: 10.1016/j.brainres.2020.14685732348775)
Santos-Junior, N.N., C.H. Catalão, L.H. Costa, B.B. Rossignoli, R.C. Dos-Santos, D. Malvar, A.S. Mecawi, and M.J. Rocha. 2018. Alterations in hypothalamic synaptophysin and death markers may be associated with vasopressin impairment in sepsis survivor rats. Journal of neuroendocrinology 30: e12604. https://doi.org/10.1111/jne.12604 . (PMID: 10.1111/jne.12604)
da Costa, L.H.A., N.N.D.S. Júnior, C.H.R. Catalão, T. Sharshar, F. Chrétien, and M.J.A. da Rocha. 2017. Vasopressin Impairment During Sepsis Is Associated with Hypothalamic Intrinsic Apoptotic Pathway and Microglial Activation. Molecular neurobiology 54: 5526–5533. https://doi.org/10.1007/s12035-016-0094-x . (PMID: 10.1007/s12035-016-0094-x27631877)
Santos-Junior, N.N., C.H.R. Catalão, L.H.A. Costa, A.O. Souza, C.M.D. Mota, L.C. Alberici, L.G.S. Branco, and M.J.A. Rocha. 2018. Experimental sepsis induces sustained inflammation and acetylcholinesterase activity impairment in the hypothalamus. Journal of neuroimmunology 324: 143–148. https://doi.org/10.1016/j.jneuroim.2018.08.013 . (PMID: 10.1016/j.jneuroim.2018.08.01330190086)
Erbaş, O., and D. Taşkıran. 2014. Sepsis-induced changes in behavioral stereotypy in rats; involvement of tumor necrosis factor-alpha, oxidative stress, and dopamine turnover. Journal of Surgical Research 186: 262–268. https://doi.org/10.1016/j.jss.2013.08.001 . (PMID: 10.1016/j.jss.2013.08.001)
Mira, J.C., B.E. Szpila, D.C. Nacionales, M.-C. Lopez, L.F. Gentile, B.J. Mathias, E.L. Vanzant, R. Ungaro, D. Holden, M.D. Rosenthal, J. Rincon, P.T. Verdugo, S.D. Larson, F.A. Moore, S.C. Brakenridge, A.M. Mohr, H.V. Baker, L.L. Moldawer, and P.A. Efron. 2016. Patterns of gene expression among murine models of hemorrhagic shock/trauma and sepsis. Physiological genomics 48: 135–144. https://doi.org/10.1152/physiolgenomics.00072.2015 . (PMID: 10.1152/physiolgenomics.00072.201526578697)
Wahab, F., N.N. Santos-Junior, R.P. de Almeida Rodrigues, L.H.A. Costa, C.H.R. Catalão, and M.J.A. Rocha. 2016. Interleukin-1 receptor antagonist decreases hypothalamic oxidative stress during experimental sepsis. Molecular neurobiology 53: 3992–3998. https://doi.org/10.1007/s12035-015-9338-4 . (PMID: 10.1007/s12035-015-9338-426184633)
Amorim, M.R., J.L. de Deus, C.A. Pereira, L.E.V. da Silva, G.S. Borges, N.S. Ferreira, M.E. Batalhão, J. Antunes-Rodrigues, E.C. Carnio, R.C. Tostes, and L.G.S. Branco. 2020. Baroreceptor denervation reduces inflammatory status but worsens cardiovascular collapse during systemic inflammation. Scientific reports 10: 6990. https://doi.org/10.1038/s41598-020-63949-x . (PMID: 10.1038/s41598-020-63949-x323328597181760)
Welch, P.D. 1967. The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short modified periodograms. IEEE Transactions on audio and electroacoustics 15: 70–73. (PMID: 10.1109/TAU.1967.1161901)
Porta, A., E. Tobaldini, S. Guzzetti, R. Furlan, N. Montano, and T. Gnecchi-Ruscone. 2007. Assessment of cardiac autonomic modulation during graded head-up tilt by symbolic analysis of heart rate variability. American Journal of Physiology-Heart and Circulatory Physiology 293: H702–H708. https://doi.org/10.1152/ajpheart.00006.2007 . (PMID: 10.1152/ajpheart.00006.200717308016)
Silva, L.E.V., V.R. Geraldini, B.P. de Oliveira, C.A.A. Silva, A. Porta, and R. Fazan. 2017. Comparison between spectral analysis and symbolic dynamics for heart rate variability analysis in the rat. Scientific reports 7: 8428. https://doi.org/10.1038/s41598-017-08888-w . (PMID: 10.1038/s41598-017-08888-w288147855559602)
Bertinieri, G., M. di Renzo, A. Cavallazzi, A.U. Ferrari, A. Pedotti, and G. Mancia. 1985. A new approach to analysis of the arterial baroreflex. Journal of hypertension. Supplement. official journal of the International Society of Hypertension 3: S79-81. (PMID: 2856787)
Saraiva, M., and A. O’Garra. 2010. The regulation of IL-10 production by immune cells. Nature reviews immunology 10: 170–181. https://doi.org/10.1038/nri2711 . (PMID: 10.1038/nri271120154735)
Ikeda, H., L.J. Old, and R.D. Schreiber. 2002. The roles of IFNγ in protection against tumor development and cancer immunoediting. Cytokine & growth factor reviews 13: 95–109. https://doi.org/10.1016/S1359-6101(01)00038-7 . (PMID: 10.1016/S1359-6101(01)00038-7)
Soares, M.P., L. Teixeira, and L.F. Moita. 2017. Disease tolerance and immunity in host protection against infection. Nature Reviews Immunology 17: 83–96. https://doi.org/10.1038/nri.2016.136 . (PMID: 10.1038/nri.2016.13628044057)
de Souza, P., K.L. Guarido, K. Scheschowitsch, L.M. da Silva, M.F. Werner, J. Assreuy, and J.E. da Silva-Santos. 2016. Impaired vascular function in sepsis-surviving rats mediated by oxidative stress and Rho-Kinase pathway. Redox biology 10: 140–147. https://doi.org/10.1016/j.redox.2016.09.016 . (PMID: 10.1016/j.redox.2016.09.016277441195065648)
de Castilho, F.M., A.L.P. Ribeiro, V. Nobre, G. Barros, and M.R. de Sousa. 2018. Heart rate variability as predictor of mortality in sepsis: A systematic review. PLoS ONE 13: e0203487. https://doi.org/10.1371/journal.pone.0203487 . (PMID: 10.1371/journal.pone.0203487302048036133362)
Shaffer, F., and J.P. Ginsberg. 2017. An overview of heart rate variability metrics and norms. Frontiers in public health 5: 258. https://doi.org/10.3389/fpubh.2017.00258 . (PMID: 10.3389/fpubh.2017.00258290342265624990)
Fairchild, K.D., J.J. Saucerman, L.L. Raynor, J.A. Sivak, Y. Xiao, D.E. Lake, and J.R. Moorman. 2009. Endotoxin depresses heart rate variability in mice: Cytokine and steroid effects. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 297: R1019–R1027. https://doi.org/10.1152/ajpregu.00132.2009 . (PMID: 10.1152/ajpregu.00132.20092763816)
Costa-Ferreira, W., L. Gomes-de-Souza, and C.C. Crestani. 2019. AT2 and MAS (but not AT1) angiotensinergic receptors in the medial amygdaloid nucleus modulate the baroreflex activity in rats. Pflügers Archiv 471: 1173–1182. https://doi.org/10.1007/s00424-019-02301-3 . (PMID: 10.1007/s00424-019-02301-331396758)
Parlow, J., J.P. Viale, G. Annat, R. Hughson, and L. Quintin. 1995. Spontaneous cardiac baroreflex in humans Comparison with drug-induced responses. Hypertension 25: 1058–1068. https://doi.org/10.1161/01.hyp.25.5.1058 . (PMID: 10.1161/01.hyp.25.5.10587737717)
Silva, L.E.V., D.P.M. Dias, C.A.A. da Silva, H.C. Salgado, and R. Fazan. 2019. Revisiting the sequence method for baroreflex analysis. Frontiers in neuroscience 13: 17. https://doi.org/10.3389/fnins.2019.00017 . (PMID: 10.3389/fnins.2019.00017307287656352748)
Di Rienzo, M., G. Parati, P. Castiglioni, R. Tordi, G. Mancia, and A. Pedotti. 2001. Baroreflex effectiveness index: An additional measure of baroreflex control of heart rate in daily life. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 280: R744–R751. https://doi.org/10.1152/ajpregu.2001.280.3.R744 . (PMID: 10.1152/ajpregu.2001.280.3.R74411171653)
Johansson, M., S.A. Gao, P. Friberg, M. Annerstedt, J. Carlström, T. Ivarsson, G. Jensen, S. Ljungman, O. Mathillas, F.-D. Nielsen, and U. Strömbom. 2007. Baroreflex effectiveness index and baroreflex sensitivity predict all-cause mortality and sudden death in hypertensive patients with chronic renal failure. Journal of hypertension 25: 163–168. https://doi.org/10.1097/01.hjh.0000254377.18983.eb . (PMID: 10.1097/01.hjh.0000254377.18983.eb17143188)
Dobreva, A., R. Brady-Nicholls, K. Larripa, C. Puelz, J. Mehlsen, and M.S. Olufsen. 2021. A physiological model of the inflammatory-thermal-pain-cardiovascular interactions during an endotoxin challenge. The Journal of Physiology 599: 1459–1485. https://doi.org/10.1113/JP280883 . (PMID: 10.1113/JP28088333450068)
Saramago, E.A., G.S. Borges, C.G. Singolani Jr., J.E. Nogueira, R.N. Soriano, E.C. Cárnio, and L.G.S. Branco. 2019. Molecular hydrogen potentiates hypothermia and prevents hypotension and fever in LPS-induced systemic inflammation. Brain behavior and immunity 75: 119–128. https://doi.org/10.1016/j.bbi.2018.09.027 . (PMID: 10.1016/j.bbi.2018.09.027)
Zoccal, D.B., L.G.H. Bonagamba, J.F.R. Paton, and B.H. Machado. 2009. Sympathetic-mediated hypertension of awake juvenile rats submitted to chronic intermittent hypoxia is not linked to baroreflex dysfunction. Experimental physiology 94: 972–983. https://doi.org/10.1113/expphysiol.2009.048306 . (PMID: 10.1113/expphysiol.2009.04830619578126)
Billman, G.E. 2013. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Frontiers in physiology 4: 26. https://doi.org/10.3389/fphys.2013.00026 . (PMID: 10.3389/fphys.2013.00026234312793576706)
Heathers, J.A.J. 2012. Sympathovagal balance from heart rate variability: An obituary. Experimental physiology 97: 556. https://doi.org/10.1113/expphysiol.2011.063867 . (PMID: 10.1113/expphysiol.2011.06386722525665)
Gholami, M., P. Mazaheri, A. Mohamadi, T. Dehpour, F. Safari, S. Hajizadeh, K.P. Moore, and A.R. Mani. 2012. Endotoxemia is associated with partial uncoupling of cardiac pacemaker from cholinergic neural control in rats. Shock 37: 219–227. https://doi.org/10.1097/SHK.0b013e318240b4be . (PMID: 10.1097/SHK.0b013e318240b4be22249221)
Grant Information:
#2016/17681-9 fapesp; #2017/09878-0 fapesp
Contributed Indexing:
Keywords: blood pressure; cecal ligation and puncture; endotoxin.; septic shock
Substance Nomenclature:
0 (Lipopolysaccharides)
0 (Thiobarbituric Acid Reactive Substances)
EC 1.15.1.1 (Superoxide Dismutase)
Entry Date(s):
Date Created: 20220104 Date Completed: 20220516 Latest Revision: 20220531
Update Code:
20240104
DOI:
10.1007/s10753-021-01617-6
PMID:
34981315
Czasopismo naukowe
Sepsis affects 31.5 million people worldwide. It is characterized by an intense drop in blood pressure driving to cardiovascular morbidity and mortality. Modern supportive care has increased survival in patients; however, after experiencing sepsis, several complications are observed, which may be potentiated by new inflammatory events. Nevertheless, the interplay between sepsis survivors and a new immune challenge in cardiovascular regulation has not been previously defined. We hypothesized that cecal ligation and puncture (CLP) cause persistent cardiovascular dysfunctions in rats as well as changes in autonomic-induced cardiovascular responses to lipopolysaccharide (LPS). Male Wistar rats had mean arterial pressure (MAP) and heart rate (HR) recorded before and after LPS or saline administration to control or CLP survivor rats. CLP survivor rats had similar baseline MAP and HR when compared to control. LPS caused a drop in MAP accompanied by tachycardia in control, while CLP survivor rats had a noteworthy enhanced MAP and a blunted tachycardia. LPS-induced hemodynamic changes were related to an autonomic disbalance to the heart and resistance vessels that were expressed as an increased low- and high-frequency power of pulse interval in CLP survivors after saline and enhancement in the low-frequency power of systolic arterial pressure in control rats after LPS. LPS-induced plasma interferon γ, but not interleukin-10 surges, was blunted in CLP survivor rats. To further access whether or not LPS-induced autonomic disbalance in CLP survivor rats was associated with oxidative stress dysregulation, superoxide dismutase (SOD) activity and thiobarbituric acid reactive substances (TBARS) plasma levels changes were measured. LPS-induced oxidative stress was higher in CLP survivor rats. These findings indicate that key changes in hemodynamic regulation of CLP survivors rats take place in response to LPS that are associated with oxidative stress changes, i.e., reduced SOD activity and increased TBARS levels.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies