Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Artificial size selection experiment reveals telomere length dynamics and fitness consequences in a wild passerine.

Tytuł:
Artificial size selection experiment reveals telomere length dynamics and fitness consequences in a wild passerine.
Autorzy:
Pepke ML; Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
Kvalnes T; Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
Rønning B; Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
Jensen H; Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
Boner W; Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK.
Saether BE; Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
Monaghan P; Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK.
Ringsby TH; Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
Źródło:
Molecular ecology [Mol Ecol] 2022 Dec; Vol. 31 (23), pp. 6224-6238. Date of Electronic Publication: 2022 Jan 27.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Oxford, UK : Blackwell Scientific Publications, c1992-
MeSH Terms:
Longevity*/genetics
Passeriformes*/genetics
Humans ; Male ; Female ; Animals ; Selection, Genetic ; Telomere ; Telomere Shortening/genetics
References:
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. Paper presented at the Second International Symposium on Information Theory, Akademiai Kiado, Budapest.
Alonso-Alvarez, C., Bertrand, S., Faivre, B., & Sorci, G. (2007). Increased susceptibility to oxidative damage as a cost of accelerated somatic growth in zebra finches. Functional Ecology, 21(5), 873-879. https://doi.org/10.1111/j.1365-2435.2007.01300.x.
Anderson, T. R. (2006). Biology of the ubiquitous house sparrow: From genes to populations. Oxford University Press.
Angelier, F., Costantini, D., Blevin, P., & Chastel, O. (2018). Do glucocorticoids mediate the link between environmental conditions and telomere dynamics in wild vertebrates? A review. General and Comparative Endocrinology, 256, 99-111. https://doi.org/10.1016/j.ygcen.2017.07.007.
Angelier, F., Vleck, C. M., Holberton, R. L., & Marra, P. P. (2013). Telomere length, non-breeding habitat and return rate in male American redstarts. Functional Ecology, 27(2), 342-350. https://doi.org/10.1111/1365-2435.12041.
Angelier, F., Vleck, C. M., Holberton, R. L., & Marra, P. P. (2015). Bill size correlates with telomere length in male American Redstarts. Journal of Ornithology, 156(2), 525-531. https://doi.org/10.1007/s10336-015-1158-9.
Araya-Ajoy, Y. G., Niskanen, A. K., Froy, H., Ranke, P. S., Kvalnes, T., Rønning, B., Le Pepke, M., Jensen, H., Ringsby, T. H., Saether, B.-E., & Wright, J. (2021). Variation in generation time reveals density regulation as an important driver of pace-of-life in a bird metapopulation. Ecology Letters, 24, 2077-2087. https://doi.org/10.1111/ele.13835.
Araya-Ajoy, Y. G., Ranke, P. S., Kvalnes, T., Rønning, B., Holand, H., Myhre, A. M., Pärn, H., Jensen, H., Ringsby, T. H., Saether, B.-E., & Wright, J. (2019). Characterizing morphological (co)variation using structural equation models: Body size, allometric relationships and evolvability in a house sparrow metapopulation. Evolution, 73(3), 452-466. https://doi.org/10.1111/evo.13668.
Aviv, A., Anderson, J. J., & Shay, J. W. (2017). Mutations, cancer and the telomere length paradox. Trends Cancer, 3(4), 253-258. https://doi.org/10.1016/j.trecan.2017.02.005.
Barrett, E. L., & Richardson, D. S. (2011). Sex differences in telomeres and lifespan. Aging Cell, 10(6), 913-921. https://doi.org/10.1111/j.1474-9726.2011.00741.x.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01.
Bauch, C., Becker, P. H., & Verhulst, S. (2013). Telomere length reflects phenotypic quality and costs of reproduction in a long-lived seabird. Proceedings of the Royal Society B: Biological Sciences, 280(1752), 20122540. https://doi.org/10.1098/rspb.2012.2540.
Bauch, C., Becker, P. H., & Verhulst, S. (2014). Within the genome, long telomeres are more informative than short telomeres with respect to fitness components in a long-lived seabird. Molecular Ecology, 23(2), 300-310. https://doi.org/10.1111/mec.12602.
Blackburn, E. H. (1991). Structure and function of telomeres. Nature, 350(6319), 569-573. https://doi.org/10.1038/350569a0.
Blackburn, E. H., Epel, E. S., & Lin, J. (2015). Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science, 350(6265), 1193-1198. https://doi.org/10.1126/science.aab3389.
Blagosklonny, M. V. (2013). Big mice die young but large animals live longer. Aging, 5(4), 227-233. https://doi.org/10.18632/aging.100551.
Boonekamp, J. J., Mulder, G. A., Salomons, H. M., Dijkstra, C., & Verhulst, S. (2014). Nestling telomere shortening, but not telomere length, reflects developmental stress and predicts survival in wild birds. Proceedings of the Royal Society B: Biological Sciences, 281(1785), 20133287. https://doi.org/10.1098/rspb.2013.3287.
Boonekamp, J. J., Simons, M. J., Hemerik, L., & Verhulst, S. (2013). Telomere length behaves as biomarker of somatic redundancy rather than biological age. Aging Cell, 12(2), 330-332. https://doi.org/10.1111/acel.12050.
Brooks, M. E., Kristensen, K., Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Mächler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9(2), 378-400. https://doi.org/10.32614/rj-2017-066.
Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference. A practical information-theoretic approach (2nd ed.). Springer-Verlag.
Caprioli, M., Romano, M., Romano, A., Rubolini, D., Motta, R., Folini, M., & Saino, N. (2013). Nestling telomere length does not predict longevity, but covaries with adult body size in wild barn swallows. Biology Letters, 9(5), 20130340. https://doi.org/10.1098/rsbl.2013.0340.
Cawthon, R. M. (2002). Telomere measurement by quantitative PCR. Nucleic Acids Research, 30(10), e47. https://doi.org/10.1093/nar/30.10.e47.
Cerchiara, J. A., Risques, R. A., Prunkard, D., Smith, J. R., Kane, O. J., & Boersma, P. D. (2017). Telomeres shorten and then lengthen before fledging in Magellanic penguins (Spheniscus magellanicus). Aging (Albany NY), 9(2), 487-493. https://doi.org/10.18632/aging.101172.
Charmantier, A., Kruuk, L. E., Blondel, J., & Lambrechts, M. M. (2004). Testing for microevolution in body size in three blue tit populations. Journal of Evolutionary Biology, 17(4), 732-743. https://doi.org/10.1111/j.1420-9101.2004.00734.x.
Chatelain, M., Drobniak, S. M., & Szulkin, M. (2020). The association between stressors and telomeres in non-human vertebrates: A meta-analysis. Ecology Letters, 23(2), 381-398. https://doi.org/10.1111/ele.13426.
Cleasby, I. R., Burke, T., Schroeder, J., & Nakagawa, S. (2011). Food supplements increase adult tarsus length, but not growth rate, in an island population of house sparrows (Passer domesticus). BMC Research Notes, 4, 431. https://doi.org/10.1186/1756-0500-4-431.
Conner, J. K. (2003). Artificial selection: A powerful tool for ecologists. Ecology, 84(7), 1650-1660. https://doi.org/10.1890/0012-9658(2003)084[1650:Asaptf]2.0.Co;2.
Cordero, P. J., Griffith, S. C., Aparicio, J. M., & Parkin, D. T. (2000). Sexual dimorphism in house sparrow eggs. Behavioral Ecology and Sociobiology, 48(5), 353-357. https://doi.org/10.1007/s002650000252.
Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society, Series B (Methodological), 34(2), 187-220. https://www.jstor.org/stable/2985181.
Criscuolo, F., Bize, P., Nasir, L., Metcalfe, N. B., Foote, C. G., Griffiths, K., Gault, E. A., & Monaghan, P. (2009). Real-time quantitative PCR assay for measurement of avian telomeres. Journal of Avian Biology, 40(3), 342-347. https://doi.org/10.1111/j.1600-048X.2008.04623.x.
Criscuolo, F., Sorci, G., Behaim-Delarbre, M., Zahn, S., Faivre, B., & Bertile, F. (2018). Age-related response to an acute innate immune challenge in mice: Proteomics reveals a telomere maintenance-related cost. Proceedings of the Royal Society B: Biological Sciences, 285(1892), 20181877. https://doi.org/10.1098/rspb.2018.1877.
Debes, P. V., Visse, M., Panda, B., Ilmonen, P., & Vasemagi, A. (2016). Is telomere length a molecular marker of past thermal stress in wild fish? Molecular Ecology, 25(21), 5412-5424. https://doi.org/10.1111/mec.13856.
Dugdale, H. L., & Richardson, D. S. (2018). Heritability of telomere variation: It is all about the environment! Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1741), 20160450. https://doi.org/10.1098/rstb.2016.0450.
Eastwood, J. R., Hall, M. L., Teunissen, N., Kingma, S. A., Hidalgo Aranzamendi, N., Fan, M., Roast, M., Verhulst, S., & Peters, A. (2019). Early-life telomere length predicts lifespan and lifetime reproductive success in a wild bird. Molecular Ecology, 28(5), 1127-1137. https://doi.org/10.1111/mec.15002.
Erten, E. Y., & Kokko, H. (2020). From zygote to a multicellular soma: Body size affects optimal growth strategies under cancer risk. Evolutionary Applications, 13(7), 1593-1604. https://doi.org/10.1111/eva.12969.
Fairlie, J., Holland, R., Pilkington, J. G., Pemberton, J. M., Harrington, L., & Nussey, D. H. (2016). Lifelong leukocyte telomere dynamics and survival in a free-living mammal. Aging Cell, 15(1), 140-148. https://doi.org/10.1111/acel.12417.
Falconer, D. S., Gauld, I. K., & Roberts, R. C. (1978). Cell numbers and cell sizes in organs of mice selected for large and small body size. Genetical Research, 31(3), 287-301. https://doi.org/10.1017/s0016672300018061.
Foley, N. M., Petit, E. J., Brazier, T., Finarelli, J. A., Hughes, G. M., Touzalin, F., Puechmaille, S. J., & Teeling, E. C. (2020). Drivers of longitudinal telomere dynamics in a long-lived bat species, Myotis myotis. Molecular Ecology, 29(16), 2963-2977. https://doi.org/10.1111/mec.15395.
Futuyma, D. J. (2010). Evolutionary constraint and ecological consequences. Evolution, 64(7), 1865-1884. https://doi.org/10.1111/j.1558-5646.2010.00960.x.
Gandrud, C. (2015). simPH: An R package for illustrating estimates from Cox proportional hazard models including for interactive and nonlinear effects. Journal of Statistical Software, 65(3), 1-20. https://doi.org/10.18637/jss.v065.i03.
Geiger, S., Le Vaillant, M., Lebard, T., Reichert, S., Stier, A., Le Maho, Y., & Criscuolo, F. (2012). Catching-up but telomere loss: Half-opening the black box of growth and ageing trade-off in wild king penguin chicks. Molecular Ecology, 21(6), 1500-1510. https://doi.org/10.1111/j.1365-294X.2011.05331.x.
Gomes, N. M., Shay, J. W., & Wright, W. E. (2010). Telomere biology in metazoa. Febs Letters, 584(17), 3741-3751. https://doi.org/10.1016/j.febslet.2010.07.031.
Graham, J. L., Bauer, C. M., Heidinger, B. J., Ketterson, E. D., & Greives, T. J. (2019). Early-breeding females experience greater telomere loss. Molecular Ecology, 28(1), 114-126. https://doi.org/10.1111/mec.14952.
Hall, M. E., Nasir, L., Daunt, F., Gault, E. A., Croxall, J. P., Wanless, S., & Monaghan, P. (2004). Telomere loss in relation to age and early environment in long-lived birds. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1548), 1571-1576. https://doi.org/10.1098/rspb.2004.2768.
Hallett, T. B., Coulson, T., Pilkington, J. G., Clutton-Brock, T. H., Pemberton, J. M., & Grenfell, B. T. (2004). Why large-scale climate indices seem to predict ecological processes better than local weather. Nature, 430(6995), 71-75. https://doi.org/10.1038/nature02708.
Hartig, F. (2020). DHARMa: Residual diagnostics for hierarchical (multi-level / mixed) regression models. R package version 0.3.1. https://CRAN.R-project.org/package=DHARMa.
Hatakeyama, H., Yamazaki, H., Nakamura, K.-I., Izumiyama-Shimomura, N., Aida, J., Suzuki, H., Tsuchida, S., Matsuura, M., Takubo, K., & Ishikawa, N. (2016). Telomere attrition and restoration in the normal teleost Oryzias latipes are linked to growth rate and telomerase activity at each life stage. Aging, 8(1), 62-76. https://doi.org/10.18632/aging.100873.
Haussmann, M. F., Winkler, D. W., Huntington, C. E., Nisbet, I. C., & Vleck, C. M. (2007). Telomerase activity is maintained throughout the lifespan of long-lived birds. Experimental Gerontology, 42(7), 610-618. https://doi.org/10.1016/j.exger.2007.03.004.
Haussmann Mark, F., Longenecker Andrew, S., Marchetto Nicole, M., Juliano Steven, A., & Bowden Rachel, M. (2012). Embryonic exposure to corticosterone modifies the juvenile stress response, oxidative stress and telomere length. Proceedings of the Royal Society B: Biological Sciences, 279(1732), 1447-1456. https://doi.org/10.1098/rspb.2011.1913.
Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Experimental Cell Research, 37, 614-636. https://doi.org/10.1016/0014-4827(65)90211-9.
Heidinger, B. J., Blount, J. D., Boner, W., Griffiths, K., Metcalfe, N. B., & Monaghan, P. (2012). Telomere length in early life predicts lifespan. Proceedings of the National Academy of Sciences of the United States of America, 109(5), 1743-1748. https://doi.org/10.1073/pnas.1113306109.
Holand, H., Kvalnes, T., Gamelon, M., Tufto, J., Jensen, H., Pärn, H., Ringsby, T. H., & Saether, B.-E. (2016). Spatial variation in senescence rates in a bird metapopulation. Oecologia, 181(3), 865-871. https://doi.org/10.1007/s00442-016-3615-4.
Hurvich, C. M., & Tsai, C.-L. (1989). Regression and time series model selection in small samples. Biometrika, 76(2), 297-307. https://doi.org/10.1093/biomet/76.2.297.
Jensen, H., Saether, B. E., Ringsby, T. H., Tufto, J., Griffith, S. C., & Ellegren, H. (2003). Sexual variation in heritability and genetic correlations of morphological traits in house sparrow (Passer domesticus). Journal of Evolutionary Biology, 16(6), 1296-1307. https://doi.org/10.1046/j.1420-9101.2003.00614.x.
Jensen, H., Steinsland, I., Ringsby, T. H., & Saether, B. E. (2008). Evolutionary dynamics of a sexual ornament in the house sparrow (Passer domesticus): The role of indirect selection within and between sexes. Evolution, 62(6), 1275-1293. https://doi.org/10.1111/j.1558-5646.2008.00395.x.
Kärkkäinen, T., Laaksonen, T., Burgess, M., Cantarero, A., Martínez-Padilla, J., Potti, J., Moreno, J., Thomson, R. L., Tilgar, V., & Stier, A. (2021). Population differences in the length and early-life dynamics of telomeres among European pied flycatchers. Molecular Ecology, https://doi.org/10.1111/mec.16312.
Kim, S.-Y., Noguera, J. C., Morales, J., & Velando, A. (2011). Quantitative genetic evidence for trade-off between growth and resistance to oxidative stress in a wild bird. Evolutionary Ecology, 25(2), 461-472. https://doi.org/10.1007/s10682-010-9426-x.
Klapper, W., Heidorn, K., Kühne, K., Parwaresch, R., & Guido, K. (1998). Telomerase activity in ‘immortal’ fish. Febs Letters, 434(3), 409-412. https://doi.org/10.1016/s0014-5793(98)01020-5.
Kraus, C., Pavard, S., & Promislow, D. E. (2013). The size-life span trade-off decomposed: Why large dogs die young. American Naturalist, 181(4), 492-505. https://doi.org/10.1086/669665.
Kvalnes, T., Ringsby, T. H., Jensen, H., Hagen, I. J., Rønning, B., Pärn, H., Holand, H., Engen, S., & Saether, B.-E. (2017). Reversal of response to artificial selection on body size in a wild passerine. Evolution, 71(8), 2062-2079. https://doi.org/10.1111/evo.13277.
Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution, 33, 402-416. https://doi.org/10.1111/j.1558-5646.1979.tb04694.x.
Lansdorp, P. M. (1995). Telomere length and proliferation potential of hematopoietic stem cells. Journal of Cell Science, 108(Pt 1), 1-6. https://doi.org/10.1242/jcs.108.1.1.
Liker, A., & Szekely, T. (2005). Mortality costs of sexual selection and parental care in natural populations of birds. Evolution, 59(4), 890-897. https://doi.org/10.1111/j.0014-3820.2005.tb01762.x.
Markó, G., Costantini, D., Michl, G., & Török, J. (2011). Oxidative damage and plasma antioxidant capacity in relation to body size, age, male sexual traits and female reproductive performance in the collared flycatcher (Ficedula albicollis). Journal of Comparative Physiology B, 181(1), 73-81. https://doi.org/10.1007/s00360-010-0502-x.
McLennan, D., Armstrong, J. D., Stewart, D. C., McKelvey, S., Boner, W., Monaghan, P., & Williams, T. (2017). Shorter juvenile telomere length is associated with higher survival to spawning in migratory Atlantic salmon. Functional Ecology, 31(11), 2070-2079. https://doi.org/10.1111/1365-2435.12939.
Metcalfe, N. B., & Monaghan, P. (2003). Growth versus lifespan: Perspectives from evolutionary ecology. Experimental Gerontology, 38(9), 935-940. https://doi.org/10.1016/S0531-5565(03)00159-1.
Mizutani, Y., Tomita, N., Niizuma, Y., & Yoda, K. (2013). Environmental perturbations influence telomere dynamics in long-lived birds in their natural habitat. Biology Letters, 9(5), 20130511. https://doi.org/10.1098/rsbl.2013.0511.
Møller, A. P., Erritzøe, J., & Soler, J. J. (2017). Life history, immunity, Peto's paradox and tumours in birds. Journal of Evolutionary Biology, 30(5), 960-967. https://doi.org/10.1111/jeb.13060.
Monaghan, P. (2014). Organismal stress, telomeres and life histories. Journal of Experimental Biology, 217(Pt 1), 57-66. https://doi.org/10.1242/jeb.090043.
Monaghan, P., Metcalfe, N. B., & Torres, R. (2009). Oxidative stress as a mediator of life history trade-offs: Mechanisms, measurements and interpretation. Ecology Letters, 12(1), 75-92. https://doi.org/10.1111/j.1461-0248.2008.01258.x.
Monaghan, P., & Ozanne, S. E. (2018). Somatic growth and telomere dynamics in vertebrates: Relationships, mechanisms and consequences. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1741), 20160446. https://doi.org/10.1098/rstb.2016.0446.
Muff, S., Nilsen, E. B., O’Hara, R. B., & Nater, C. R. (2021). Rewriting results sections in the language of evidence. Trends in Ecology & Evolution, https://doi.org/10.1016/j.tree.2021.10.009.
National Oceanic and Atmospheric Administration (NOAA) (2018). Climate prediction center: North Atlantic Oscillation (NAO). https://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml.
Nettle, D., Andrews, C., Reichert, S., Bedford, T., Gott, A., Parker, C., Kolenda, C., Martin-Ruiz, C., Monaghan, P., & Bateson, M. (2016). Brood size moderates associations between relative size, telomere length, and immune development in European starling nestlings. Ecology and Evolution, 6(22), 8138-8148. https://doi.org/10.1002/ece3.2551.
Nettle, D., Andrews, C., Reichert, S., Bedford, T., Kolenda, C., Parker, C., Martin-Ruiz, C., Monaghan, P., & Bateson, M. (2017). Early-life adversity accelerates cellular ageing and affects adult inflammation: Experimental evidence from the European starling. Scientific Reports, 7, 40794. https://doi.org/10.1038/srep40794.
Olsson, M., Pauliny, A., Wapstra, E., Uller, T., Schwartz, T., & Blomqvist, D. (2011). Sex differences in sand lizard telomere inheritance: Paternal epigenetic effects increases telomere heritability and offspring survival. PLoS One, 6(4), e17473. https://doi.org/10.1371/journal.pone.0017473.
Pauliny, A., Devlin, R. H., Johnsson, J. I., & Blomqvist, D. (2015). Rapid growth accelerates telomere attrition in a transgenic fish. BMC Evolutionary Biology, 15(1), 159. https://doi.org/10.1186/s12862-015-0436-8.
Pauliny, A., Wagner, R. H., Augustin, J., Szep, T., & Blomqvist, D. (2006). Age-independent telomere length predicts fitness in two bird species. Molecular Ecology, 15(6), 1681-1687. https://doi.org/10.1111/j.1365-294X.2006.02862.x.
Pepke, M. L., & Eisenberg, D. T. A. (2021). On the comparative biology of mammalian telomeres: Telomere length co-evolves with body mass, lifespan and cancer risk. Molecular Ecology, https://doi.org/10.1111/mec.15870.
Pepke, M. L., Kvalnes, T., Lundregan, S., Boner, W., Monaghan, P., Saether, B.-E., Jensen, H., & Ringsby, T. H. (2021). Genetic architecture and heritability of early-life telomere length in a wild passerine. Molecular Ecology, https://doi.org/10.1111/mec.16288.
Pepper, G. V., Bateson, M., & Nettle, D. (2018). Telomeres as integrative markers of exposure to stress and adversity: a systematic review and meta-analysis. Royal Society Open Science, 5(8), 180744. https://doi.org/10.1098/rsos.180744.
Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), e45. https://doi.org/10.1093/nar/29.9.e45.
Pick, J. L., Hatakeyama, M., Ihle, K. E., Gasparini, J., Haussy, C., Ishishita, S., Matsuda, Y., Yoshimura, T., Kanaoka, M. M., Shimizu-Inatsugi, R., Shimizu, K. K., & Tschirren, B. (2020). Artificial selection reveals the role of transcriptional constraints in the maintenance of life history variation. Evolution Letters, 4(3), 200-211. https://doi.org/10.1002/evl3.166.
Postma, E., Visser, J., & Van Noordwijk, A. J. (2007). Strong artificial selection in the wild results in predicted small evolutionary change. Journal of Evolutionary Biology, 20(5), 1823-1832. https://doi.org/10.1111/j.1420-9101.2007.01379.x.
Pujol, B., Blanchet, S., Charmantier, A., Danchin, E., Facon, B., Marrot, P., Roux, F., Scotti, I., Teplitsky, C., Thomson, C. E., & Winney, I. (2018). The missing response to selection in the wild. Trends in Ecology & Evolution, 33(5), 337-346. https://doi.org/10.1016/j.tree.2018.02.007.
R Core Team (2020). R: A language and environment for statistical computing (Version 3.6.3). R Foundation for Statistical Computing. www.R-project.org/.
Reichert, S., & Stier, A. (2017). Does oxidative stress shorten telomeres in vivo? A review. Biology Letters, 13(12), 20170463. https://doi.org/10.1098/rsbl.2017.0463.
Remot, F., Ronget, V., Froy, H., Rey, B., Gaillard, J. M., Nussey, D. H., & Lemaitre, J. F. (2020). No sex differences in adult telomere length across vertebrates: A meta-analysis. Royal Society Open Science, 7(11), 200548. https://doi.org/10.1098/rsos.200548.
Reznick, D. (1985). Costs of reproduction: An evaluation of the empirical evidence. Oikos, 44(2), 257-267. https://doi.org/10.2307/3544698.
Ringsby, T. H., Jensen, H., Pärn, H., Kvalnes, T., Boner, W., Gillespie, R., Holand, H., Hagen, I. J., Rønning, B., Saether, B.-E., & Monaghan, P. (2015). On being the right size: Increased body size is associated with reduced telomere length under natural conditions. Proceedings of the Royal Society B: Biological Sciences, 282(1820), 20152331. https://doi.org/10.1098/rspb.2015.2331.
Ringsby, T. H., Saether, B.-E., & Solberg, E. J. (1998). Factors affecting juvenile survival in house sparrow Passer domesticus. Journal of Avian Biology, 29(3), 241-247. https://doi.org/10.2307/3677106.
Ringsby, T. H., Saether, B.-E., Tufto, J., Jensen, H., & Solberg, E. J. (2002). Asynchronous spatiotemporal demography of a house sparrow metapopulation in a correlated environment. Ecology, 83(2), 561-569. https://doi.org/10.1890/0012-9658(2002)083[0561:Asdoah]2.0.Co;2.
Rising, J. D., & Somers, K. M. (1989). The measurement of overall body size in birds. The Auk, 106(4), 666-674.
Roff, D. A., & Fairbairn, D. J. (2007). The evolution of trade-offs: Where are we? Journal of Evolutionary Biology, 20(2), 433-447. https://doi.org/10.1111/j.1420-9101.2006.01255.x.
Roff, D. A., & Fairbairn, D. J. (2012). A test of the hypothesis that correlational selection generates genetic correlations. Evolution, 66(9), 2953-2960. https://doi.org/10.1111/j.1558-5646.2012.01656.x.
Rønning, B., Broggi, J., Bech, C., Moe, B., Ringsby, T. H., Pärn, H., Hagen, I. J., Saether, B.-E., & Jensen, H. (2016). Is basal metabolic rate associated with recruit production and survival in free-living house sparrows? Functional Ecology, 30(7), 1140-1148. https://doi.org/10.1111/1365-2435.12597.
Scott, N. M., Haussmann, M. F., Elsey, R. M., Trosclair, P. L., & Vleck, C. M. (2006). Telomere length shortens with body length in Alligator mississippiensis. Southeastern Naturalist, 5(4), 685-692. https://doi.org/10.1656/1528-7092.
Seluanov, A., Gladyshev, V. N., Vijg, J., & Gorbunova, V. (2018). Mechanisms of cancer resistance in long-lived mammals. Nature Reviews Cancer, 18(7), 433-441. https://doi.org/10.1038/s41568-018-0004-9.
Sidorov, I., Kimura, M., Yashin, A., & Aviv, A. (2009). Leukocyte telomere dynamics and human hematopoietic stem cell kinetics during somatic growth. Experimental Hematology, 37(4), 514-524. https://doi.org/10.1016/j.exphem.2008.11.009.
Smith, S. M., Nager, R. G., & Costantini, D. (2016). Meta-analysis indicates that oxidative stress is both a constraint on and a cost of growth. Ecology and Evolution, 6(9), 2833-2842. https://doi.org/10.1002/ece3.2080.
Spurgin, L. G., Bebbington, K., Fairfield, E. A., Hammers, M., Komdeur, J., Burke, T., Dugdale, H. L., & Richardson, D. S. (2018). Spatio-temporal variation in lifelong telomere dynamics in a long-term ecological study. Journal of Animal Ecology, 87(1), 187-198. https://doi.org/10.1111/1365-2656.12741.
Stearns, S. C. (1989). Trade-offs in life-history evolution. Functional Ecology, 3(3), 259-268. https://doi.org/10.2307/2389364.
Stenseth, N. C., Ottersen, G., Hurrell, J. W., Mysterud, A., Lima, M., Chan, K. S., Yoccoz, N. G., & Adlandsvik, B. (2003). Review article. Studying climate effects on ecology through the use of climate indices: The North Atlantic Oscillation, El Nino Southern Oscillation and beyond. Proceedings. Biological Sciences, 270(1529), 2087-2096. https://doi.org/10.1098/rspb.2003.2415.
Sudyka, J. (2019). Does reproduction shorten telomeres? Towards integrating individual quality with life-history strategies in telomere biology. BioEssays, 41(11), e1900095. https://doi.org/10.1002/bies.201900095.
The Norwegian Meteorological Institute (2018). eKlima. http://eklima.met.no.
Trivers, R. (1985). Social evolution. Benjamin/Cummings Pub. Co.
Therneau, T. (2021). A package for survival analysis in R. R package version 3.2-13. https://CRAN.R-project.org/package=survival.
Ujvari, B., & Madsen, T. (2009). Short telomeres in hatchling snakes: Erythrocyte telomere dynamics and longevity in tropical pythons. PLoS One, 4(10), e7493. https://doi.org/10.1371/journal.pone.0007493.
van Noordwijk, A. J., & de Jong, G. (1986). Acquisition and allocation of resources: Their influence on variation in life history tactics. The American Naturalist, 128(1), 137-142. https://doi.org/10.1086/284547.
Vedder, O., Verhulst, S., Bauch, C., & Bouwhuis, S. (2017). Telomere attrition and growth: A life-history framework and case study in common terns. Journal of Evolutionary Biology, 30(7), 1409-1419. https://doi.org/10.1111/jeb.13119.
Vedder, O., Verhulst, S., Zuidersma, E., & Bouwhuis, S. (2018). Embryonic growth rate affects telomere attrition: An experiment in a wild bird. The Journal of Experimental Biology, 221(15), jeb181586. https://doi.org/10.1242/jeb.181586.
Verhulst, S., Aviv, A., Benetos, A., Berenson, G. S., & Kark, J. D. (2013). Do leukocyte telomere length dynamics depend on baseline telomere length? An analysis that corrects for ‘regression to the mean'. European Journal of Epidemiology, 28(11), 859-866. https://doi.org/10.1007/s10654-013-9845-4.
von Zglinicki, T. (2002). Oxidative stress shortens telomeres. Trends in Biochemical Sciences, 27(7), 339-344. https://doi.org/10.1016/S0968-0004(02)02110-2.
Wang, Q., Zhan, Y., Pedersen, N. L., Fang, F., & Hagg, S. (2018). Telomere length and all-cause mortality: A meta-analysis. Ageing Research Reviews, 48, 11-20. https://doi.org/10.1016/j.arr.2018.09.002.
Watson, H., Bolton, M., & Monaghan, P. (2015). Variation in early-life telomere dynamics in a long-lived bird: Links to environmental conditions and survival. Journal of Experimental Biology, 218(Pt 5), 668-674. https://doi.org/10.1242/jeb.104265.
Wilbourn, R. V., Froy, H., McManus, M.-C., Cheynel, L., Gaillard, J.-M., Gilot-Fromont, E., Regis, C., Rey, B., Pellerin, M., Lemaître, J.-F., & Nussey, D. H. (2017). Age-dependent associations between telomere length and environmental conditions in roe deer. Biology Letters, 13(9), 20170434. https://doi.org/10.1098/rsbl.2017.0434.
Wilbourn, R. V., Moatt, J. P., Froy, H., Walling, C. A., Nussey, D. H., & Boonekamp, J. J. (2018). The relationship between telomere length and mortality risk in non-model vertebrate systems: A meta-analysis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1741), 20160447. https://doi.org/10.1098/rstb.2016.0447.
Wilson, A. J., & Nussey, D. H. (2010). What is individual quality? An evolutionary perspective. Trends in Ecology & Evolution, 25(4), 207-214. https://doi.org/10.1016/j.tree.2009.10.002.
Wood, E. M., & Young, A. J. (2019). Telomere attrition predicts reduced survival in a wild social bird, but short telomeres do not. Molecular Ecology, 28(16), 3669-3680. https://doi.org/10.1111/mec.15181.
Young, A. J. (2018). The role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1741), 20160452. https://doi.org/10.1098/rstb.2016.0452.
Zera, A. J., & Harshman, L. G. (2001). The physiology of life history trade-offs in animals. Annual Review of Ecology and Systematics, 32(1), 95-126. https://doi.org/10.1146/annurev.ecolsys.32.081501.114006.
Contributed Indexing:
Keywords: artificial selection; body size; individual fitness; life-history trade-off; longevity; telomere biology
Local Abstract: [Publisher, Danish] Telomerdynamik kan ligge bag afvejninger mellem livshistorietraek såsom vaekst, kropsstørrelse og livslaengde, men vores evne til at kvantificere sådanne processer i naturlige, umanipulerede bestande er begraenset. Vi har undersøgt hvorledes 4 års kunstig selektion for enten større eller mindre tarsuslaengde, et estimat for kropsstørrelse, påvirkede telomerlaengden (TL) i det tidlige liv, samt overlevelses- og formeringsevner, i to øbestande af vilde gråspurve over en periode på 11 år. Vores forventning var, at den kunstige selektion ville skubbe bestandene vaek fra deres optimale kropsstørrelse og øge den faenotypiske varians i kropsstørrelse. Kunstig selektion for større individer forårsagde en reduktion i TL, men der var begraenset evidens for en øgning i TL når vi selekterede for mindre individer. Der var en negativ korrelation mellem fugleungernes TL og tarsuslaengde under begge selektionsregimer. Hanner havde laengere telomerer end hunner og der var en negativ effekt af ugunstige vejrforhold på TL. Dernaest undersøgte vi om aendringer i TL kunne underbygge effekter på overlevelses- og formeringsevner som følge af afvigelsen fra den optimale kropsstørrelse. Analyser af dødeligheden indikerede disruptiv selektion på TL fordi både korte og lange telomerer i det tidlige liv viste tendens til at vaere associeret med de laveste dødelighedsrater. Derudover var der en tendens til en negativ sammenhaeng mellem TL og årlig reproduktiv succes, men kun i bestanden hvor kropsstørrelse var øget eksperimentelt. Vores resultater antyder, at naturlig selektion for optimal kropsstørrelse i vildtlevende dyr kan vaere associeret med aendringer i TL (i løbet af vaekstperioden), som er kendt for at vaere forbundet med levetid hos nogle fuglearter.
SCR Organism:
Passer domesticus
Entry Date(s):
Date Created: 20220108 Date Completed: 20230130 Latest Revision: 20230209
Update Code:
20240104
DOI:
10.1111/mec.16340
PMID:
34997994
Czasopismo naukowe
Telomere dynamics could underlie life-history trade-offs among growth, size and longevity, but our ability to quantify such processes in natural, unmanipulated populations is limited. We investigated how 4 years of artificial selection for either larger or smaller tarsus length, a proxy for body size, affected early-life telomere length (TL) and several components of fitness in two insular populations of wild house sparrows over a study period of 11 years. The artificial selection was expected to shift the populations away from their optimal body size and increase the phenotypic variance in body size. Artificial selection for larger individuals caused TL to decrease, but there was little evidence that TL increased when selecting for smaller individuals. There was a negative correlation between nestling TL and tarsus length under both selection regimes. Males had longer telomeres than females and there was a negative effect of harsh weather on TL. We then investigated whether changes in TL might underpin fitness effects due to the deviation from the optimal body size. Mortality analyses indicated disruptive selection on TL because both short and long early-life telomeres tended to be associated with the lowest mortality rates. In addition, there was a tendency for a negative association between TL and annual reproductive success, but only in the population where body size was increased experimentally. Our results suggest that natural selection for optimal body size in the wild may be associated with changes in TL during growth, which is known to be linked to longevity in some bird species.
(© 2022 John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies