Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Gasoline fume inhalation induces apoptosis, inflammation, and favors Th2 polarization in C57BL/6 mice.

Tytuł:
Gasoline fume inhalation induces apoptosis, inflammation, and favors Th2 polarization in C57BL/6 mice.
Autorzy:
Nour-Eldine W; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.
Sayyed K; School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
Harhous Z; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.
Dagher-Hamalian C; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.
Mehanna S; Department of Natural Sciences, Lebanese American University, Beirut, Lebanon.
Achkouti D; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.
ElKazzaz H; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.
Khnayzer RS; Department of Natural Sciences, Lebanese American University, Beirut, Lebanon.
Kobeissy F; Faculty of Medicine, Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon.
Khalil C; School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
Abi-Gerges A; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.
Źródło:
Journal of applied toxicology : JAT [J Appl Toxicol] 2022 Jul; Vol. 42 (7), pp. 1178-1191. Date of Electronic Publication: 2022 Jan 25.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: : Chichester : John Wiley And Sons
Original Publication: [Philadelphia, Pa. : Heyden & Son, c1981-
MeSH Terms:
Gasoline*/toxicity
Inflammation*/chemically induced
Animals ; Apoptosis ; Female ; Inhalation Exposure/adverse effects ; Lung ; Mice ; Mice, Inbred C57BL
References:
Abdrabouh, A. E. (2019). Liver disorders related to exposure to gasoline fumes in male rats and role of fenugreek seed supplementation. Environmental Science and Pollution Research International, 26(9), 8949-8957. https://doi.org/10.1007/s11356-019-04307-x.
Abi-Gerges, A., Dagher-Hamalian, C., Abou-Khalil, P., Chahine, J. B., Hachem, P., & Khalil, C. (2020). Evaluation of waterpipe smoke toxicity in C57BL/6 mice model. Pulmonary Pharmacology & Therapeutics, 63, 101940. https://doi.org/10.1016/j.pupt.2020.101940.
Abi-Gerges, A., Richter, W., Lefebvre, F., Mateo, P., Varin, A., Heymes, C., Samuel, J. L., Lugnier, C., Conti, M., Fischmeister, R., & Vandecasteele, G. (2009). Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on beta-adrenergic cAMP signals. Circulation Research, 105(8), 784-792. https://doi.org/10.1161/CIRCRESAHA.109.197947.
Abubakar, M. B., Abdullah, W. Z., Sulaiman, S. A., & Ang, B. S. (2015). The effects of exposure to petrol vapours on growth, haematological parameters and oxidative markers in Sprague-Dawley male rats. The Malaysian journal of medical sciences: MJMS, 22(1), 23-31.
Anderson, D., Yu, T. W., & Schmezer, P. (1995). An investigation of the DNA-damaging ability of benzene and its metabolites in human lymphocytes, using the comet assay. Environmental and Molecular Mutagenesis, 26(4), 305-314. https://doi.org/10.1002/em.2850260406.
Arthur, J. R. (2000). The glutathione peroxidases. Cellular and Molecular Life Sciences, 57(13-14), 1825-1835. https://doi.org/10.1007/pl00000664.
Bollati, V., Baccarelli, A., Hou, L., Bonzini, M., Fustinoni, S., Cavallo, D., Byun, H. M., Jiang, J., Marinelli, B., Pesatori, A. C., Bertazzi, P. A., & Yang, A. S. (2007). Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Research, 67(3), 876-880. https://doi.org/10.1158/0008-5472.Can-06-2995.
Boonpiyathad, T., Sözener, Z. C., Satitsuksanoa, P., & Akdis, C. A. (2019). Immunologic mechanisms in asthma. Seminars in Immunology, 46, 101333. https://doi.org/10.1016/j.smim.2019.101333.
Bors, D., & Goodpaster, J. (2016). Chemical analysis of racing fuels using total vaporization and gas chromatography mass spectrometry (GC/MS). Analytical Methods, 8(19), 3899-3902. https://doi.org/10.1039/C6AY00539J.
Bowen, S. E., Batis, J. C., Mohammadi, M. H., & Hannigan, J. H. (2005). Abuse pattern of gestational toluene exposure and early postnatal development in rats. Neurotoxicology and Teratology, 27(1), 105-116. https://doi.org/10.1016/j.ntt.2004.09.007.
Clark, C. R., Schreiner, C. A., Parker, C. M., Gray, T. M., & Hoffman, G. M. (2014). Health assessment of gasoline and fuel oxygenate vapors: Subchronic inhalation toxicity. Regulatory Toxicology and Pharmacology, 70(2 Suppl), S18-S28. https://doi.org/10.1016/j.yrtph.2014.07.003.
Dingwall, K. M., Maruff, P., Fredrickson, A., & Cairney, S. (2011). Cognitive recovery during and after treatment for volatile solvent abuse. Drug and Alcohol Dependence, 118(2), 180-185. https://doi.org/10.1016/j.drugalcdep.2011.03.017.
Ezzat, A., Riad, N. H., Fares, N. H., Hegazy, H. G., & Alrefadi, M. A. (2011). Gasoline inhalation induces perturbation in the rat lung antioxidant defense system and tissue structure. IJESE, 1, 1-14.
Fairchild, G. A. (1972). Measurement of respiratory volume for virus retention studies in mice. Applied Microbiology, 24(5), 812-818. https://doi.org/10.1128/am.24.5.812-818.1972.
Fenga, C., Gangemi, S., & Costa, C. (2016). Benzene exposure is associated with epigenetic changes (review). Molecular Medicine Reports, 13(4), 3401-3405. https://doi.org/10.3892/mmr.2016.4955.
Fukai, T., & Ushio-Fukai, M. (2020). Cross-talk between NADPH oxidase and mitochondria: Role in ROS signaling and angiogenesis. Cell, 9(8), 1849. https://doi.org/10.3390/cells9081849.
Goodheart, R. S., & Dunne, J. W. (1994). Petrol sniffer's encephalopathy. A study of 25 patients. The Medical Journal of Australia, 160(4), 178-181. https://doi.org/10.5694/j.1326-5377.1994.tb126596.x.
Gray, T. M., Steup, D., Roberts, L. G., O'Callaghan, J. P., Hoffman, G., Schreiner, C. A., & Clark, C. R. (2014). Health assessment of gasoline and fuel oxygenate vapors: Reproductive toxicity assessment. Regulatory Toxicology and Pharmacology, 70(2 Suppl), S48-S57. https://doi.org/10.1016/j.yrtph.2014.04.014.
Greenwald, R., Hayat, M. J., Dons, E., Giles, L., Villar, R., Jakovljevic, D. G., & Good, N. (2019). Estimating minute ventilation and air pollution inhaled dose using heart rate, breath frequency, age, sex and forced vital capacity: A pooled-data analysis. PLoS ONE, 14(7), e0218673. https://doi.org/10.1371/journal.pone.0218673.
Guo, X., Zhong, W., Chen, Y., Zhang, W., Ren, J., & Gao, A. (2019). Benzene metabolites trigger pyroptosis and contribute to haematotoxicity via TET2 directly regulating the Aim2/Casp1 pathway. eBioMedicine, 47, 578-589. https://doi.org/10.1016/j.ebiom.2019.08.056.
Hanna, R., Nour-Eldine, W., Saliba, Y., Dagher-Hamalian, C., Hachem, P., Abou-Khalil, P., Mika, D., Varin, A., El Hayek, M. S., Pereira, L., Farès, N., & Abi-Gerges, A. (2021). Cardiac phosphodiesterases are differentially increased in diabetic cardiomyopathy. Life Sciences, 283, 119857. https://doi.org/10.1016/j.lfs.2021.119857.
Hilpert, M., Mora, B. A., Ni, J., Rule, A. M., & Nachman, K. E. (2015). Hydrocarbon release during fuel storage and transfer at gas stations: Environmental and health effects. Current Environmental Health Reports, 2(4), 412-422. https://doi.org/10.1007/s40572-015-0074-8.
Howard, M. O., Bowen, S. E., Garland, E. L., Perron, B. E., & Vaughn, M. G. (2011). Inhalant use and inhalant use disorders in the United States. Addiction Science & Clinical Practice, 6(1), 18-31.
Kaminskyy, V. O., & Zhivotovsky, B. (2014). Free radicals in cross talk between autophagy and apoptosis. Antioxidants & Redox Signaling, 21(1), 86-102. https://doi.org/10.1089/ars.2013.5746.
Kaplan, M. H., Sun, Y. L., Hoey, T., & Grusby, M. J. (1996). Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature, 382(6587), 174-177. https://doi.org/10.1038/382174a0.
Kinawy, A. A. (2009). Impact of gasoline inhalation on some neurobehavioural characteristics of male rats. BMC Physiology, 9, 21. https://doi.org/10.1186/1472-6793-9-21.
Le Gros, G., Ben-Sasson, S. Z., Seder, R., Finkelman, F. D., & Paul, W. E. (2008). Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. Journal of Immunology, 181(5), 2943-2951.
Lenaz, G. (1998). Role of mitochondria in oxidative stress and ageing. Biochimica et Biophysica Acta, 1366(1-2), 53-67. https://doi.org/10.1016/s0005-2728(98)00120-0.
Li, Y., Kuppusamy, P., Zweir, J. L., & Trush, M. A. (1996). Role of Cu/Zn-superoxide dismutase in xenobiotic activation. II. Biological effects resulting from the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone. Molecular Pharmacology, 49(3), 412-421.
Lighvani, A. A., Frucht, D. M., Jankovic, D., Yamane, H., Aliberti, J., Hissong, B. D., Nguyen, B. V., Gadina, M., Sher, A., Paul, W. E., & O'Shea, J. J. (2001). T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proceedings of the National Academy of Sciences of the United States of America, 98(26), 15137-15142. https://doi.org/10.1073/pnas.261570598.
MacFarland, H. N., Ulrich, C. E., Holdsworth, C. E., Kitchen, D. N., Halliwell, W. H., & Blum, S. C. (1984). A chronic inhalation study with unleaded gasoline vapor. Journal of the American College of Toxicology, 3(4), 231-248. https://doi.org/10.3109/10915818409009078.
Magram, J., Connaughton, S. E., Warrier, R. R., Carvajal, D. M., Wu, C. Y., Ferrante, J., Stewart, C., Sarmiento, U., Faherty, D. A., & Gately, M. K. (1996). IL-12-deficient mice are defective in IFN gamma production and type 1 cytokine responses. Immunity, 4(5), 471-481. https://doi.org/10.1016/s1074-7613(00)80413-6.
Martinez, F. O., Sica, A., Mantovani, A., & Locati, M. (2008). Macrophage activation and polarization. Frontiers in Bioscience, 13, 453-461. https://doi.org/10.2741/2692.
Mattia, C. J., Ali, S. F., & Bondy, S. C. (1993). Toluene-induced oxidative stress in several brain regions and other organs. Molecular and Chemical Neuropathology, 18(3), 313-328. https://doi.org/10.1007/BF03160122.
Mikhalkevich, N., Becknell, B., Caligiuri, M. A., Bates, M. D., Harvey, R., & Zheng, W. P. (2006). Responsiveness of naive CD4 T cells to polarizing cytokine determines the ratio of Th1 and Th2 cell differentiation. Journal of Immunology, 176(3), 1553-1560. https://doi.org/10.4049/jimmunol.176.3.1553.
Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., & Coffman, R. L. (1986). Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. Journal of Immunology, 136(7), 2348-2357.
National Research Council. (2011). Guide for the care and use of laboratory animals. © National Academy of Sciences.
Ng, T. H. S., Britton, G., Hill, E., Verhagen, J., Burton, B., & Wraith, D. (2013). Regulation of adaptive immunity; the role of interleukin-10. Frontiers in Immunology, 4, 129. https://doi.org/10.3389/fimmu.2013.00129.
O'Callaghan, J. P., Daughtrey, W. C., Clark, C. R., Schreiner, C. A., & White, R. (2014). Health assessment of gasoline and fuel oxygenate vapors: Neurotoxicity evaluation. Regulatory Toxicology and Pharmacology, 70(2 Suppl), S35-S42. https://doi.org/10.1016/j.yrtph.2014.05.002.
O'Garra, A. (1998). Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity, 8(3), 275-283. https://doi.org/10.1016/s1074-7613(00)80533-6.
Orecchio, S., Fiore, M., Barreca, S., & Vara, G. (2017). Volatile profiles of emissions from different activities analyzed using canister samplers and gas chromatography-mass spectrometry (GC/MS) analysis: A case study. International Journal of Environmental Research and Public Health, 14(2), 195. https://doi.org/10.3390/ijerph14020195.
Owagboriaye, F., Aina, S., Oladunjoye, R., Salisu, T., Adenekan, A., & Dedeke, G. (2021). Insights into the potential mechanism underlying liver dysfunction in male albino rat exposed to gasoline fumes. Egyptian Journal of Basic and Applied Sciences, 8(1), 302-316. https://doi.org/10.1080/2314808X.2021.1992118.
Owagboriaye, F. O., Dedeke, G. A., Ashidi, J. S., Aladesida, A. A., & Olooto, W. E. (2018). Effect of gasoline fumes on reproductive function in male albino rats. Environmental Science and Pollution Research International, 25(5), 4309-4319. https://doi.org/10.1007/s11356-017-0786-4.
Page, N. P., & Mehlman, M. (1989). Health effects of gasoline refueling vapors and measured exposures at service stations. Toxicology and Industrial Health, 5(5), 869-890. https://doi.org/10.1177/074823378900500521.
Roberts, L. G., Gray, T. M., Marr, M. C., Tyl, R. W., Trimmer, G. W., Hoffman, G. M., Murray, F. J., Clark, C. R., & Schreiner, C. A. (2014). Health assessment of gasoline and fuel oxygenate vapors: Developmental toxicity in mice. Regulatory Toxicology and Pharmacology, 70(2 Suppl), S58-S68. https://doi.org/10.1016/j.yrtph.2014.06.011.
Saito, K., & Wada, H. (1993). Behavioral approaches to toluene intoxication. Environmental Research, 62(1), 53-62. https://doi.org/10.1006/enrs.1993.1088.
Schreiner, C. A., Hoffman, G. M., Gudi, R., & Clark, C. R. (2014). Health assessment of gasoline and fuel oxygenate vapors: Micronucleus and sister chromatid exchange evaluations. Regulatory Toxicology and Pharmacology, 70(2 Suppl), S29-S34. https://doi.org/10.1016/j.yrtph.2014.05.014.
Scott, P. (1991). IFN-gamma modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis. Journal of Immunology, 147(9), 3149-3155.
Seder, R. A., Paul, W. E., Davis, M. M., & Fazekas de St Groth, B. (1992). The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. The Journal of Experimental Medicine, 176(4), 1091-1098. https://doi.org/10.1084/jem.176.4.1091.
Sims, P. (1980). The metabolic activation of chemical carcinogens. British Medical Bulletin, 36(1), 11-18. https://doi.org/10.1093/oxfordjournals.bmb.a071607.
Swain, S. L., Weinberg, A. D., English, M., & Huston, G. (1990). IL-4 directs the development of Th2-like helper effectors. Journal of Immunology, 145(11), 3796-3806.
Tegeris, J. S., & Balster, R. L. (1994). A comparison of the acute behavioral effects of alkylbenzenes using a functional observational battery in mice. Fundamental and Applied Toxicology, 22(2), 240-250. https://doi.org/10.1006/faat.1994.1028.
Uboh, F., Akpanabiatu, M., Eyong, E., Ebong, P., & Eka, O. (2005). Evaluation of toxicological implications of inhalation exposure to kerosene fumes and petrol fumes in rats. Acta Biologica Szegediensis, 49, 3-419.
Uzma, N., Kumar, B. S., & Hazari, M. A. (2010). Exposure to benzene induces oxidative stress, alters the immune response and expression of p53 in gasoline filling workers. American Journal of Industrial Medicine, 53(12), 1264-1270. https://doi.org/10.1002/ajim.20901.
White, K. L. Jr., Peachee, V. L., Armstrong, S. R., Twerdok, L. E., Clark, C. R., & Schreiner, C. A. (2014). Health assessment of gasoline and fuel oxygenate vapors: Immunotoxicity evaluation. Regulatory Toxicology and Pharmacology, 70(2 Suppl), S43-S47. https://doi.org/10.1016/j.yrtph.2014.04.010.
Wu, C. C., & Bratton, S. B. (2013). Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxidants & Redox Signaling, 19(6), 546-558. https://doi.org/10.1089/ars.2012.4905.
Youle, R. J., & Strasser, A. (2008). The BCL-2 protein family: Opposing activities that mediate cell death. Nature Reviews Molecular Cell Biology, 9(1), 47-59. https://doi.org/10.1038/nrm2308.
Zeeni, N., Dagher-Hamalian, C., Dimassi, H., & Faour, W. H. (2015). Cafeteria diet-fed mice is a pertinent model of obesity-induced organ damage: A potential role of inflammation. Inflammation Research, 64(7), 501-512. https://doi.org/10.1007/s00011-015-0831-z.
Zhao, R. Z., Jiang, S., Zhang, L., & Yu, Z. B. (2019). Mitochondrial electron transport chain, ROS generation and uncoupling (review). International Journal of Molecular Medicine, 44(1), 3-15. https://doi.org/10.3892/ijmm.2019.4188.
Zuurbier, M., Hoek, G., Van den Hazel, P., & Brunekreef, B. (2009). Minute ventilation of cyclists, car and bus passengers: An experimental study. Environmental Health, 8(1), 48. https://doi.org/10.1186/1476-069X-8-48.
Grant Information:
CNRS-L/LAU No. 858 to A.A-G National Council for Scientific Research (CNRS-L) in Lebanon and the Lebanese American University; post-doctoral fellowship program (WN-E, KS, ZH, and SM); SRRC-R-2019-109 to A.A-G Lebanese American University (LAU), through the office of the Graduate Studies and Research office (GSR); 2/SPRG15 to C.K. Lebanese American University (LAU), through the office of the Graduate Studies and Research office (GSR)
Contributed Indexing:
Keywords: Th2 polarization; antioxidant enzymes; apoptosis; gasoline inhalation; inflammation
Substance Nomenclature:
0 (Gasoline)
Entry Date(s):
Date Created: 20220110 Date Completed: 20220614 Latest Revision: 20220713
Update Code:
20240105
DOI:
10.1002/jat.4286
PMID:
35001415
Czasopismo naukowe
Gasoline exposure has been widely reported in the literature as being toxic to human health. However, the exact underlying molecular mechanisms triggered by its inhalation have not been thoroughly investigated. We herein present a model of sub-chronic, static gasoline vapor inhalation in adult female C57BL/6 mice. Animals were exposed daily to either gasoline vapors (0.86 g/animal/90 min) or ambient air for 5 days/week over 7 consecutive weeks. At the end of the study period, toxic and molecular mechanisms underlying the inflammatory, oxidative, and apoptotic effects triggered by gasoline vapors, were examined in the lungs and liver of gasoline-exposed (GE) mice. Static gasoline exposure induced a significant increase (+21%) in lungs/body weight (BW) ratio in GE versus control (CON) mice along with a pulmonary inflammation attested by histological staining. The latter was consistent with increases in the transcript levels of proinflammatory cytokines [Interleukins (ILs) 4 and 6], respectively by ~ 6- and 4-fold in the lungs of GE mice compared to CON. Interestingly, IL-10 expression was also increased by ~ 10-fold in the lungs of GE mice suggesting an attempt to counterbalance the established inflammation. Moreover, the pulmonary expression of IL-12 and TNF-α was downregulated by 2- and 4-fold, respectively, suggesting the skewing toward Th2 phenotype. Additionally, GE mice showed a significant upregulation in Bax/Bcl-2 ratio, caspases 3, 8, and 9 with no change in JNK expression in the lungs, suggesting the activation of both intrinsic and extrinsic apoptotic pathways. Static gasoline exposure over seven consecutive weeks had a minor hepatic portal inflammation attested by H&E staining along with an increase in the hepatic expression of the mitochondrial complexes in GE mice. Therefore, tissue damage biomarkers highlight the health risks associated with vapor exposure and may present potential therapeutic targets for recovery from gasoline intoxication.
(© 2022 John Wiley & Sons, Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies